LIFE SCIENCES P2
EXEMPLAR 2014
MEMORANDUM

MARKS: 150

This memorandum consists of 11 pages.
PRINCIPLES RELATED TO MARKING LIFE SCIENCES

1. **If more information than marks allocated is given**
 Stop marking when maximum marks is reached and put a wavy line and ‘max’ in the right-hand margin.

2. **If, for example, three reasons are required and five are given**
 Mark the first three irrespective of whether all or some are correct/incorrect.

3. **If whole process is given when only a part of it is required**
 Read all and credit the relevant part.

4. **If comparisons are asked for but descriptions are given**
 Accept if the differences/similarities are clear.

5. **If tabulation is required but paragraphs are given**
 Candidates will lose marks for not tabulating.

6. **If diagrams are given with annotations when descriptions are required**
 Candidates will lose marks.

7. **If flow charts are given instead of descriptions**
 Candidates will lose marks.

8. **If sequence is muddled and links do not make sense**
 Where sequence and links are correct, credit. Where sequence and links are incorrect, do not credit. If sequence and links become correct again, resume credit.

9. **Non-recognised abbreviations**
 Accept if first defined in answer. If not defined, do not credit the unrecognised abbreviation but credit the rest of the answer if correct.

10. **Wrong numbering**
 If answer fits into the correct sequence of questions but the wrong number is given, it is acceptable.

11. **If language used changes the intended meaning**
 Do not accept.

12. **Spelling errors**
 If recognisable, accept the answer, provided it does not mean something else in Life Sciences or if it is out of context.

13. **If common names are given in terminology**
 Accept, provided it was accepted at the national memo discussion meeting.

14. **If only the letter is asked for but only the name is given (and vice versa)**
 Do not credit.
15. **If units are not given in measurements**
 Candidates will lose marks. Memorandum will allocate marks for units separately.

16. **Be sensitive to the sense of an answer, which may be stated in a different way.**

17. **Caption**
 All illustrations (diagrams, graphs, tables, etc.) must have a caption.

18. **Code-switching of official languages (terms and concepts)**
 A single word or two that appear(s) in any official language other than the learners’ assessment language used to the greatest extent in his/her answers should be credited if it is correct. A marker that is proficient in the relevant official language should be consulted. This is applicable to all official languages.

19. **Changes to the memorandum**
 No changes must be made to the memoranda without consulting the provincial internal moderator who in turn will consult with the national internal moderator (and the Umalusi moderators where necessary).

20. **Official memoranda**
 Only memoranda bearing the signatures of the national internal moderator and the Umalusi moderators and distributed by the National Department of Basic Education via the provinces must be used.
SECTION A

QUESTION 1

1.1 | 1.1.1 | A✓✓ |
	1.1.2	B✓✓
	1.1.3	A✓✓
	1.1.4	A✓✓
	1.1.5	D✓✓
	1.1.6	C✓✓
	1.1.7	D✓✓
	1.1.8	B✓✓
	1.1.9	B✓✓
	1.1.10	B✓✓

(10 x 2) (20)

1.2 | 1.2.1 | Recessive✓ |
	1.2.2	Locus✓
	1.2.3	Phenotype✓
	1.2.4	Autosomes✓
	1.2.5	Genetic engineering✓/DNA manipulation/Biotechnology/DNA recombination
	1.2.6	Chromatids✓

(6 x 1) (6)

1.3 | 1.3.1 | Both A and B✓✓ |
	1.3.2	A only✓✓
	1.3.3	B only✓✓
	1.3.4	A only✓✓
	1.3.5	B only✓✓
	1.3.6	A only✓✓
	1.3.7	None✓✓
	1.3.8	B only✓✓

(8 x 2) (16)

1.4 | 1.4.1 | (a) RrYy✓ |
		(b) rryy✓
	1.4.2	RY, Ry, rY, ry✓✓
	1.4.3	(a) Wrinkled, yellow✓ seeds
		(b) Round, yellow✓ seeds
	1.4.4	RRYY✓✓

(1) (1) (2) (1) (1) (2) [8] [50]
QUESTION 2

2.1 2.1.1 (a) DNA✓
(b) Ribosome✓

2.1.2 (a) G✓
(b) U✓

2.1.3 – DNA codes for a particular protein✓ but cannot leave nucleus
– One strand of DNA is used as a template✓ to form mRNA✓

2.1.4 – According to the codons on mRNA✓
– tRNA molecules with matching anticodons✓
– bring the required amino acids to the ribosome✓
– This is called translation✓
– The amino acids become attached by peptide bonds✓
– to form the required protein✓

2.1.5 Methionine, ✓ Glycine, ✓ Arginine✓ (in the correct order)

2.2 2.2.1 *H. erectus*✓

2.2.2 *A. afarensis*✓

2.2.3 (a) 3 mya – 2,4✓ mya = 0,6✓ my✓
OR
3 mya – 2,3✓ mya = 0,7✓ my✓

(b) Fossils✓

2.2.4 (a) *H. neanderthalensis*✓

(b) *H. neanderthalensis* and *H. sapiens* share a common✓ ancestor✓
OR
Both evolved✓ from *H heidelbergensis*✓
2.3 2.3.1 - The homologous chromosome pair ✓
- does not separate ✓ / non-disjunction
- during anaphase 1 ✓

2.3.2 1 ✓

2.3.3 Down syndrome ✓

2.3.4 - During crossing over ✓
 - in Prophase 1 ✓
 - segments of chromatids of homologous chromosomes ✓
 - are exchanged ✓
 - leading to each gamete having a mix of genetic material from both parents ✓

- During Metaphase I ✓ / II
 - each pair of homologous chromosomes ✓ / each chromosome
 - may line up in different ways ✓ on the equator of the spindle
 - allowing the gametes to have different combinations of maternal and paternal chromosomes ✓

2.4 2.4.1 Diagram 1 ✓

2.4.2 Diagrams 2 & 3 ✓ / 2 & 4 / 3 & 4

2.4.3 Analogous structures show that two organisms evolved independently of each other ✓
Homologous structures show that two organisms have a common ancestor ✓.
QUESTION 3

3.1 3.1.1 (a) Time ✓

(b) Mortality of mosquitoes ✓

3.1.2 Mosquito Mortality due to DDT ✓/Resistance of mosquitos to DDT will decrease ✓ over time ✓

OR

Mosquito Mortality due to DDT ✓/Resistance of mosquitos to DDT will increase ✓ over time ✓

OR

Mosquito Mortality due to DDT ✓/Resistance of mosquitos to DDT will remain the same ✓ over time ✓

3.1.3

NOTE:
If the wrong type of graph is drawn:
- Marks will be lost for 'correct type of graph'
If axes are transposed:
- Marks will be lost for labelling of X-axis and Y-axis
Mark allocation for the graph

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Elaboration</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of graph</td>
<td>Line graph drawn</td>
<td>1</td>
</tr>
<tr>
<td>Caption</td>
<td>Includes both variables: 'Percentage mortality of mosquitoes' and 'Time'</td>
<td>1</td>
</tr>
<tr>
<td>X-axis</td>
<td>Appropriate scale AND Correct label and units for X-axis: Time (months)</td>
<td>1</td>
</tr>
<tr>
<td>Y-axis</td>
<td>Appropriate scale AND Correct label and units for Y-axis: Mortality of mosquitoes (%)</td>
<td>1</td>
</tr>
<tr>
<td>Plotting of points</td>
<td>1–8 points plotted correctly – 1 mark</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>All 9 points plotted correctly – 2 marks</td>
<td></td>
</tr>
</tbody>
</table>

3.1.4
- Same species of mosquito
- Identical laboratory conditions for the full period of the investigation
- The same scientist must be used for the full period of the investigation
- Mosquitos should not be hurt for the full period of the investigation
 (Mark first TWO only) (any 2) (2)

3.1.5
- Use a larger sample of mosquitoes
- Repeat the investigation
- Take many samples each time and calculate the average mortality
 (Mark first TWO only) (any 2) (2)

3.1.6
- More mosquitoes are produced than can survive.
- There is genetic variation amongst the mosquitoes.
- Some mosquitoes may be naturally resistant to DDT.
- When DDT is applied
 - those that are resistant survive
 - and they then reproduce
 - passing the allele for resistance to the offspring
- Those that are not resistant, die
 - and their alleles are lost from the population
- The number of DDT-resistant mosquitoes therefore increases over the generations.
 (any 8) (23)

3.2
3.2.1
The oldest fossils of human ancestors were only found in Africa (2)

3.2.2
- Mitochondrial DNA is passed down from mother to child
- mutations on the mitochondrial DNA
- were traced to an ancestral female that existed in Africa (3) (5)
3.3 3.3.1
(a) \(X^dX^d \)
(2)
(b) \(X^DY \)
(2)

3.3.2 3
(2)

3.3.3 \(P_1 \)

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal female</td>
<td>(X^Dx^d)</td>
</tr>
<tr>
<td>Normal male</td>
<td>(X^DY)</td>
</tr>
</tbody>
</table>

Meiosis

\(G_1 \)

<table>
<thead>
<tr>
<th>Gametes</th>
<th>Genotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X^D), (X^d)</td>
<td>(X^Dx^d), (X^Dx^d), (X^Dx^d)</td>
</tr>
</tbody>
</table>

Fertilisation

\(F_1 \)

<table>
<thead>
<tr>
<th>Genotypes</th>
<th>Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 normal females</td>
<td>1 normal male, 1 colour-blind male</td>
</tr>
</tbody>
</table>

Parents and offspring\(\checkmark / P_1 \) & \(F_1 \)
Meiosis and fertilisation\(\checkmark \)

OR

\(P_1 \)/parent phenotype

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Gametes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grey bodied x grey bodied</td>
<td>(Gg) x (Gg)</td>
</tr>
</tbody>
</table>

Meiosis

<table>
<thead>
<tr>
<th>Gametes</th>
<th>Genotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X^D), (X^d)</td>
<td>(X^Dx^d), (X^Dx^d), (X^Dx^d)</td>
</tr>
</tbody>
</table>

Fertilisation

\(F_1 \)

<table>
<thead>
<tr>
<th>Genotypes</th>
<th>Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 normal females</td>
<td>1 normal male, 1 colour-blind male</td>
</tr>
</tbody>
</table>

Parents and offspring\(\checkmark / P_1 \) & \(F_1 \)
Meiosis and fertilisation\(\checkmark \)

\[40\]

\(80\)
SECTION C

QUESTION 4

The development of a new species

- If a population splits into two populations.
- There is now no gene flow between the two populations.
- Since each population may be exposed to different environmental conditions,
- Natural selection occurs independently in each of the two populations
- such that the individuals of the two populations become very different from each other
- genotypically and phenotypically.
- Even if the two populations were to mix again,
- they will not be able to reproduce with each other, thus becoming different species

The development of bipedalism

- The backward position of the foramen magnum on the skull,
- the narrow pelvis
- and the less-curved spine
- indicates that the ape-like beings were quadripedal

The forward position of the foramen magnum on the skull,
- the wider pelvis
- and the curved spine
- indicates that modern humans are bipedal

Change in the diet from raw food to cooked food

- The large teeth, especially the canines
- as well as the large and long jaws
- which makes the skull prognathous
- as well as cranial/brow ridges associated with large muscles that operate the jaws
- indicate that the ape-like beings ate raw food that required a great amount of processing/tearing, biting and chewing.

- The smaller teeth, including the canines
- as well as the smaller jaw size
- which makes the skull less prognathous
- as well as the absence of cranial/brow ridges due to the presence of smaller muscles for chewing
- indicate that modern humans rely on a diet of cooked food that does not require the same amount of processing/tearing, biting and chewing.
ASSESSING THE PRESENTATION OF THE ESSAY

<table>
<thead>
<tr>
<th>Relevance</th>
<th>Logical sequence</th>
<th>Comprehension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only information regarding development of a new species, the development of bipedalism and change in diet is given (no irrelevant information).</td>
<td>Generally, the development of a new species, the development of bipedalism and change in diet are explained logically.</td>
<td>All three aspects of the question are described correctly.</td>
</tr>
</tbody>
</table>

TOTAL SECTION C: 20
GRAND TOTAL: 150