basic education

Department:
Basic Education REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICAL LITERACY P2
FEBRUARY/MARCH 2017

MEMORANDUM

MARKS: 150

Symbol	Explanation
M	Method
M/A	Method with accuracy
CA	Consistent accuracy
A	Accuracy
C	Conversion
S	Simplification
RT/RG/RD	Reading from table/graph/diagram
SF	Correct substitution in formula
O	Opinion/Example
P	Penalty, e.g. for no units, incorrect rounding off, etc.
R	Rounding off
AO	Answer only full marks
NPR	No penalty for rounding
J	Justification

This memorandum consists of $\mathbf{1 5}$ pages.

QUESTION 1 [31 marks]

Ques	Solution	Explanation	Level
1.1.1	$\begin{aligned} \text { World population } & =65,3 \text { million } \times 113 \quad \checkmark \mathrm{M} \\ & =7378,9 \text { million } \checkmark \mathrm{S} \\ & =74 \text { hundred million } \checkmark \mathrm{R} \\ & =7400 \text { million }=7400000000 \\ & =7,4 \text { billion } \end{aligned}$	1M multiplying 1S simplification in millions 1 R answer in hundred million	$\begin{aligned} & \mathrm{L} 2 \\ & \mathrm{D} \end{aligned}$
1.1.2	$\begin{aligned} \% \text { Europe } & =100 \%-(12 \%+29 \%+14 \%+39 \%) \\ & =6 \% \quad \checkmark \mathrm{~A} \end{aligned}$ $\begin{aligned} \text { Total displaced people } & =(65,3+21,3+10) \text { million } \\ & =96,6 \text { million } \quad \checkmark \mathrm{A} \end{aligned}$ Number of people distributed in Europe $\begin{aligned} & =6 \% \times 96,6 \text { million } \quad \checkmark \mathrm{M} \\ & =5,796 \text { million OR } 5796000 \quad \checkmark \mathrm{CA} \end{aligned}$ OR $\begin{aligned} & \text { Total displaced people }=(65,3+21,3+10) \text { million } \\ & =96,6 \text { million } \quad \checkmark \mathrm{A} \\ & 12 \%+29 \%+14 \%+39 \%=94 \% \quad \checkmark \mathrm{~A} \\ & 94 \% \times 96,6 \text { million }=90,804 \text { million } \quad \checkmark \mathrm{M} \\ & \text { Number of people in Europe } \\ & =96,6 \text { million }-90,804 \text { million } \quad \checkmark \mathrm{M} \\ & =5,796 \text { million } \quad \checkmark \mathrm{CA} \end{aligned}$	1 M adding to get 94% 1A percentage for Europe 1A total 1M percentage calculation 1CA number in Europe OR 1A total 1 A adding to get 94% 1M percentage calculation 1 M subtracting from total 1CA number in Europe	$\begin{aligned} & \text { L3 } \\ & \text { D } \end{aligned}$
1.1.3	Number of persons from the three countries given $\begin{aligned} & =(1,1+2,7+4,9) \text { million } \\ & =8,7 \text { million } \quad \checkmark \mathrm{A} \end{aligned}$ $\begin{aligned} & \% \text { of refugees }=\frac{8,7 \text { million }}{21,3 \text { million }} \times 100 \% \\ & \checkmark \mathrm{RT} \\ &=40,8 \% \quad \checkmark \mathrm{M} \\ & \checkmark \mathrm{CA} \end{aligned}$ \therefore The statement is not valid. $\quad \checkmark \mathrm{O}$	1A total persons 1RT total of refugees 1M \% calculation 1CA percentage 10 verification OR	$\begin{aligned} & \hline \mathrm{L} 4 \\ & \mathrm{D} \end{aligned}$

Ques	Solution	Explanation	Level
	OR Number of refugees from the three countries $\begin{aligned} & \quad \stackrel{\checkmark \mathrm{RT}}{ }=21,3 \text { million } \times 54 \%^{\checkmark \mathrm{M}} \\ & =11,5 \text { million } \quad \mathrm{A} \end{aligned}$ Total number at the three countries $\begin{aligned} & =(1,1+2,7+4,9) \text { million } \\ & =8,7 \text { million } \quad \checkmark \mathrm{A} \end{aligned}$ \therefore The statement is not valid. $\checkmark \mathrm{O}$	OR 1RT total refugees $1 \mathrm{M} \%$ calculation 1A number 1A total persons 10 deduction NP for omitting millions	
1.2.1	$\begin{aligned} \% \text { females below } 18 \mathrm{yrs} & =8,8 \%+10,2 \%+6,6 \% \\ & =25,6 \% \checkmark \mathrm{RT} \end{aligned}$	1RT correct three values 1 M adding 1CA simplification AO (3)	$\begin{aligned} & \mathrm{L} 2 \\ & \mathrm{P} \end{aligned}$
1.2.2	This age group covers the largest range of ages. OR $\checkmark \checkmark \mathrm{O}$ This age group is a workforce. They might not have work in their own country. OR They are physically fit and able to migrate. $\checkmark \checkmark \mathrm{O}$ OR Adults fleeing to protect their children/ poltical climate of country. $\checkmark \checkmark 0$ OR Any other valid reason	20 explanation	$\begin{aligned} & \hline \text { L4 } \\ & \text { D } \end{aligned}$
1.3.1	May $\checkmark \checkmark$ O	2A correct month	$\begin{aligned} & \mathrm{L} 2 \\ & \mathrm{D} \end{aligned}$
1.3.2	Mean $\begin{aligned} & =\frac{5580+7373+10280+29810+40340+43460}{6} \\ & =\frac{136843}{6} \checkmark \mathrm{~A} \\ & =22807,16667 \checkmark \mathrm{CA} \\ & \approx 22807 \end{aligned}$	1 M calculating mean 1 A sum of the number of refugees 1CA mean NPR (No mode or median calculated correctly full marks)	$\begin{aligned} & \mathrm{L} 2 \\ & \mathrm{D} \end{aligned}$

Ques	Solution	Explanation	Level
1.3.3	For both years the number of refugees increase from January to June $\checkmark \mathrm{O}$ $\checkmark \mathrm{O} \quad$ OR $\quad \checkmark \mathrm{O}$ For 2014 the number of refugees increase from January to June and for 2015 the number of refugees increase from January to June $\quad \checkmark \mathrm{O}$ OR For both ${ }^{\checkmark} \mathrm{O}$ years the number of refugees increase substantially in April and June. \checkmark O OR Month to $\stackrel{\checkmark}{ } \mathrm{O}$ month there are an increase form 2014 to 2015 OR Compared to 2014, 2015 has more refugees entering Europe per month. OR There was a significant increase from March to ${ }^{\checkmark} \mathrm{O}$ April in both years	10 both years 10 increase 10 months OR 10 for year 10 increase 10 months OR 10 both years 10 increase substantially 10 months OR 10 both years 10 increase substantially 10 months OR 10 both years 10 increase substantially 10 months OR 10 both years 10 increase substantially 10 months	$\begin{aligned} & \hline \mathrm{L} 4 \\ & \mathrm{D} \end{aligned}$
1.4		1M increase \% 1A 118,7\% 1CA increased amount 1 C value in millions or 1950 budget to 0,3 1CA factor NPR OR 1M calculating \% 1 A amount 1CA increase amount 1 C value in millions	$\begin{aligned} & \hline \text { L3 } \\ & \text { F } \end{aligned}$
		[31]	

QUESTION 2 [40 marks]

Ques	Solution	Explanation	Level
2.1.1	$\begin{aligned} \text { Density } & =\frac{39000}{13,5 \text { acres }} \checkmark \text { SF } \\ & =2888,88 \text { persons per acre } \\ & \approx 2889 \text { persons per acre } \end{aligned}$	1SF substitution of correct values 1CA simplification 1 R rounding	$\begin{aligned} & \hline \mathrm{L} 2 \\ & \mathrm{M} \& \mathrm{P} \end{aligned}$
2.1.2	$\begin{aligned} \mathrm{P} & =\frac{11393}{39000} \quad \checkmark \mathrm{RT} \\ & \approx 0,29 \text { or } 29,21 \% \quad \checkmark \mathrm{CA} \end{aligned}$	1RT reading values 1 M probability concept 1CA correct rounded probability AO	$\begin{aligned} & \hline \text { L2 } \\ & \mathrm{P} \end{aligned}$
2.1.3 (a)	$\begin{array}{ccc} \checkmark \mathrm{RT} & \checkmark \mathrm{M} & \\ 15000-14979=21 & \checkmark \mathrm{CA} \end{array}$	1RT values 1 M subtracting 1CA number of seats	
$\begin{aligned} & 2.1 .3 \\ & \text { (b) } \end{aligned}$	There are provisions made for disabled spectators who don't require seats. OR Staff, line judges, officials, coaches, media personnel. ${ }^{\checkmark}$	2 O reason	L4 M\&P
2.1.4 (a)	$\begin{aligned} \text { Width of the screen } & =\frac{\checkmark \mathrm{RT}_{2}}{40 \mathrm{~m}^{2}} \quad \checkmark \mathrm{M} \\ & =8 \mathrm{~m} \end{aligned} \checkmark \mathrm{~A}$	1RT value 1 M dividing 1A width	
2.1.4 (b)	Measured width of screen 6 mm Scale: $6 \mathrm{~mm}: 8 \mathrm{~m} \quad \checkmark \mathrm{~A}$ $6 \mathrm{~mm}: 8000 \mathrm{~mm} \quad \checkmark \mathrm{C}$ $1: 1333,33 \checkmark \mathrm{CA}$	1A scale 1C converting 1CA unit scale	$\begin{aligned} & \hline \text { L3 } \\ & \text { M\&P } \end{aligned}$
2.2.1	$12 \checkmark \checkmark \mathrm{~A}$	2 A correct number	L2 M\&P
2.2.2	F $\checkmark \checkmark \mathrm{A}$	2A correct number	$\begin{aligned} & \hline \mathrm{L} 2 \\ & \mathrm{M} \& \mathrm{P} \end{aligned}$

Ques	Solution	Explanation	Level
2.2.3	$\begin{aligned} \text { Area of the court } & =41 \mathrm{~m} \times 22 \mathrm{~m} \\ & =902 \mathrm{~m}^{2} \checkmark \mathrm{~A} \\ \text { Seed needed } & =902 \mathrm{~m}^{2} \times 245 \mathrm{~g} / \mathrm{m}^{2} \quad \checkmark \mathrm{M} \\ & =220990 \mathrm{~g} \\ & =220,99 \mathrm{~kg} \quad \checkmark \mathrm{C} \\ \text { Fescue seed } & =\frac{3}{10} \times 220,99 \mathrm{~kg} \quad \checkmark \mathrm{M} \\ & =66,297 \mathrm{~kg} \quad \checkmark \mathrm{CA} \end{aligned}$ The statement is not valid. $\checkmark \mathrm{O}$ OR $\begin{aligned} \text { Area of the court } & =41 \mathrm{~m} \times 22 \mathrm{~m} \\ & =902 \mathrm{~m}^{2} \checkmark \mathrm{~A} \end{aligned} \quad \begin{aligned} \frac{3}{10} \text { of area of the court } & =\frac{3}{10} \times 902 \mathrm{~m}^{2} \quad \checkmark \mathrm{M} \\ & =270,6 \mathrm{~m}^{2} \end{aligned}$ Fescue seed $=270,6 \mathrm{~m}^{2} \times 245 \mathrm{~g} / \mathrm{m}^{2}$ $=66297 \mathrm{~g} \quad \checkmark \mathrm{CA}$ $=66,297 \mathrm{~kg} \checkmark \mathrm{C}$ The statement is not valid. $\quad \checkmark \mathrm{O}$ $\begin{aligned} & \text { Area }=902 \mathrm{~m}^{2} \quad \checkmark \mathrm{~A} \quad \text { OR } \\ & \text { Ratio } 7: 3 \\ & \frac{3}{10} \times 245 \mathrm{~g}=73,5 \mathrm{~g} \text { fescue/ } \mathrm{m}^{2} \end{aligned}$ $\checkmark \mathrm{M}$ $73,5 \mathrm{~g} / \mathrm{m}^{2} \times 902 \mathrm{~m}^{2}=66297 \mathrm{~g}$ \checkmark CA $=66,297 \mathrm{~kg} \quad \checkmark \mathrm{C}$ Not valid $\quad \checkmark \mathrm{O}$	1 A area 1M multiply with spread rate 1 C converting to kg 1 M working with ratio 1CA mass of red fescue seed 10 conclusion 1A area 1 M working with ratio 1M multiply with spread rate 1CA mass of red fescue seed 1 C converting to kg 10 conclusion OR 1 A area 1 M working with ratio 1M multiply with spread rate 1CA mass of seed 1 C converting to kg 10 conclusion	$\begin{aligned} & \mathrm{L} 4 \\ & \mathrm{M} \end{aligned}$

Ques	Solution	Explanation	Level
2.3.1	$\begin{aligned} \text { Percentage increase } & =\frac{£ 2,50-£ 1,70}{£ 1,70} \times 100 \% \quad \checkmark \mathrm{SF} \\ & =47,0588 \ldots \% \quad \checkmark \mathrm{CA} \\ \% \text { increase per year } & =\frac{47,0588}{21} \checkmark \mathrm{~A} \\ & \approx 2,24 \% \quad \checkmark \mathrm{CA} \end{aligned}$	1RT reading values from graph 1SF substitution 1CA simplification 1A dividing by 21 1CA simplification NPR	$\begin{aligned} & \hline \text { L3 } \\ & \text { F } \end{aligned}$
2.3.2	$\begin{aligned} \text { Income } & =142000^{\checkmark} \times £ 2,50 \checkmark \mathrm{RT} \\ & =£ 355000 \quad \checkmark \mathrm{CA} \end{aligned}$	1M multiplying 1RT price from graph 1CA income AO	$\begin{aligned} & \mathrm{L} 2 \\ & \mathrm{~F} \end{aligned}$
2.3.3	The average inflation rate remained unchanged /constant OR The annual inflation rate change for the UK would have been 0\%	2A comment (if the answer only refers to the price of strawberries max 1 mark)	$\begin{aligned} & \hline \text { L4 } \\ & \text { F } \end{aligned}$
		[40]	

QUESTION 3 [36 marks]			
Ques	Solution	Explanation	Level
3.1.1	$\begin{aligned} \checkmark \mathrm{RT} & \\ 35^{\circ} \mathrm{C}-\left(-3^{\circ} \mathrm{C}\right) & =35^{\circ} \mathrm{C}+3^{\circ} \mathrm{C} \\ & =38^{\circ} \mathrm{C} \quad \checkmark \mathrm{CA} \end{aligned}$	1RT reading values from table 1CA difference AO (2)	$\begin{array}{\|l\|} \hline \text { M } \\ \text { L2 } \end{array}$
3.1.2	$\begin{aligned} & \text { Range }=29^{\circ} \mathrm{C} \text { M }-9^{\circ} \mathrm{C}=20^{\circ} \mathrm{C} \checkmark \mathrm{~A} \\ & \text { Month: September } \quad \checkmark \mathrm{A} \end{aligned}$	1 M concept of range 1 A range in ${ }^{\circ} \mathrm{C}$ 1A September	$\begin{array}{\|l\|} \hline \mathrm{D} \\ \mathrm{~L} 2 \end{array}$
3.1.3	Mean and extreme maximums and \mathbf{n} $1 \mathrm{~A} \times 6$ for each two points plotted correctly 1CA joining the points	inimums $\begin{array}{ll} \vec{\circ} \\ \text { Z } \end{array}$	D L2
3.1.4	Inner band OR \checkmark A $\quad \checkmark \mathrm{A}$ 25 to 75 percentile band. OR \checkmark A Above the mean but below the $755^{\text {th }}$ percentile	2A band OR 1 A interpreting the starting point of the percentile band 1A end point of percentile band (accept 50 to 75 percentile band)	$\begin{array}{\|l\|} \hline \mathrm{D} \\ \mathrm{~L} 4 \end{array}$

Ques	Solution	Explanation	
3.1.5	$\begin{aligned} { }^{\circ} \mathrm{F} & =\left({ }^{\circ} \mathrm{C} \times \frac{9}{5}\right)+32 \\ 119,1^{\circ} \mathrm{F} & =\left({ }^{\circ} \mathrm{C} \times \frac{9}{5}\right)+32 \quad \checkmark \mathrm{SF} \\ \left({ }^{\circ} \mathrm{C} \times \frac{9}{5}\right) & =119,1-32 \quad \checkmark \mathrm{~S} \\ { }^{\circ} \mathrm{C} & =87,1 \div \frac{9}{5} \quad \checkmark \mathrm{~S} \\ & =48,3888 \\ & \approx 48,4{ }^{\circ} \mathrm{C} \quad \checkmark \mathrm{CA} \end{aligned}$	1SF substituting values 1S simplification 1S simplification 1CA Celsius value	$\begin{array}{\|l\|} \hline \text { M } \\ \text { L3 } \end{array}$
3.2.1	$\underset{\sim}{\checkmark \checkmark R T}$	2RT modal wind direction.	$\begin{array}{\|l\|} \hline \mathrm{D} \\ \mathrm{~L} 3 \end{array}$
3.2.2	$\begin{aligned} \mathrm{P}_{(\text {westerly })} & =16 \%+11 \%+9 \% \quad \checkmark \mathrm{RT} \\ & =36 \% \quad \checkmark \mathrm{CA} \end{aligned}$	1RT reading all W values 1CA probability AO	$\begin{array}{\|l\|} \hline \mathrm{P} \\ \mathrm{~L} 2 \end{array}$
3.2.3	The percentages do not add up to 100%.	2 O explanation (2)	$\begin{array}{\|l\|} \hline \mathrm{D} \tag{2}\\ \mathrm{~L} 4 \end{array}$

Ques	Solution	Explanation	T\&L
3.3.1	$\begin{aligned} \text { Accommodation per person } & =\frac{\mathrm{R} 850}{3} \quad \checkmark \mathrm{~A} \\ & =\mathrm{R} 283,33 \quad \checkmark \mathrm{CA} \end{aligned}$ Kz $100000=$ R 9173,05 $\begin{aligned} \text { Amount Kwanza } & =\frac{\mathrm{R} 283,33}{\mathrm{R} 9173,05} \times \mathrm{Kz100000} \stackrel{\checkmark \mathrm{~A}}{\checkmark \mathrm{M}} \\ & \approx \mathrm{Kz} 3 \text { 088,76 } \quad \checkmark \mathrm{CA} \end{aligned}$ OR $\begin{aligned} \mathrm{R} 9173,05 & =\mathrm{Kz} 100000 \\ \mathrm{R} 1 & =\frac{100000}{9173,05} \quad \checkmark \mathrm{M} \\ & =\text { Kz 10,9014995 } \end{aligned}$ $\begin{aligned} \therefore \mathrm{R} 850 & =\mathrm{Kz} 10,9014995 \times 850 \quad \checkmark \mathrm{~A} \\ & \approx \mathrm{Kz} 9266,27 \quad \checkmark \mathrm{CA} \end{aligned}$ Cost per person $=\frac{9266,27}{3} \quad \checkmark \mathrm{~A}$ $\approx \mathrm{Kz} 3088,76 \quad \checkmark \mathrm{CA}$	1A divide by 3 1CA accommodation per person in R 1A multiply by 100000 1 M divide by 9 173,05 1CA amount per person OR 1M divide by 9 173,05 1A multiply by 850 1CA total amount 1A divide by 3 1CA accommodation per person in Kz (using R850 per person max 5 marks. Multiplying R850 by 3 max 4 marks)	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 3 \end{aligned}$
3.3.2	\$1 = Kz 169,27344 $\begin{aligned} \text { Average disposable salary } & =\$ 1760,41 \times \mathrm{Kz} 169,27344 / \$ \\ & \approx \mathrm{Kz} 297990,66 \quad \checkmark \mathrm{~A} \end{aligned}$ Angola: Rent as a $\%$ of income $=\frac{145990}{297990,66} \times 100 \%^{\checkmark \mathrm{M}}$ $=48,99 \% \quad \checkmark \mathrm{CA}$ South Africa Rent as a $\%$ of income $=\frac{4430}{16500} \times 100 \% \quad \checkmark \mathrm{M}$ $=26,85 \% \quad \checkmark \mathrm{CA}$ Not valid .It is much cheaper in SA but not double.	1M multiplying 1A Disposable salary in Kz 1 M percentage calculation 1CA percentage 1 M percentage calculation 1CA percentage 10 conclusion	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 4 \end{aligned}$
		[36]	

QUESTION 4 [43 marks]			
Ques	Solution	Explanation	Levels
4.1.1	$\begin{aligned} \text { Volumetric mass } & =\frac{43 \mathrm{~cm} \times 30,5 \mathrm{~cm} \times 14,5 \mathrm{~cm}}{5000} \begin{aligned} & \checkmark \mathrm{SF} \\ & \checkmark \mathrm{RT} \\ &=3,8 \mathrm{~kg} \quad \checkmark \mathrm{CA} \end{aligned} \end{aligned}$ OR $\begin{aligned} \text { Volume }\left(\text { in } \mathrm{mm}^{3}\right) & =430 \times 305 \times 145 \checkmark \mathrm{SF} \\ & =19016750 \\ \text { Volumetric mass } & =\frac{19016750}{5000} \quad \checkmark \mathrm{RT} \\ & =3803,35 \mathrm{~g} \div 1000 \quad \checkmark \mathrm{C} \\ & =3,8 \mathrm{~kg} \quad \checkmark \mathrm{CA} \end{aligned}$	1 SF substitution $\mathrm{mm} / \mathrm{cm}$ 1C conversion to cm 1RT correct mass factor 1CA volumetric mass AO OR 1 SF substitution in volume formula 1RT correct mass factor 1C conversion 1CA volumetric mass	$\begin{aligned} & \hline \mathrm{L} 2 \\ & \mathrm{M} \end{aligned}$
4.1.2	$\begin{aligned} & \text { Volumetric mass }=\frac{\text { volume of the parcel in } \mathrm{cm}^{3}}{\text { mass factor }} \\ & \begin{aligned} 2 \mathrm{~kg} & =\frac{20 \mathrm{~cm} \times 25 \mathrm{~cm} \times 15 \mathrm{~cm}}{\text { mass factor }} \quad \checkmark \mathrm{SF} \\ \text { Mass factor } & =\frac{7500 \mathrm{~cm}^{3}}{2 \mathrm{~kg}^{3}} \checkmark \mathrm{~S} \quad \checkmark \mathrm{~S} \\ & =3750 \mathrm{~cm}^{3} / \mathrm{kg} \quad \checkmark \mathrm{~S} \\ & \approx 4000 \mathrm{~cm}^{3} / \mathrm{kg} \quad \checkmark \mathrm{R} \end{aligned} \end{aligned}$ OR $\text { Volumetric mass (using } \begin{aligned} 5000 \text {) } & =\frac{20 \mathrm{~cm} \times 25 \mathrm{~cm} \times 15 \mathrm{~cm}}{5000} \checkmark \mathrm{SF} \\ & =1,5 \mathrm{~kg} \quad \checkmark \mathrm{~S} \end{aligned}$ $\begin{aligned} \text { Volumetric mass (using 4000) } & =\frac{20 \mathrm{~cm} \times 25 \mathrm{~cm} \times 15 \mathrm{~cm}}{4000} \quad \checkmark \mathrm{SF} \\ & =1,875 \mathrm{~kg} \quad \checkmark \mathrm{~S}\end{aligned}$ Hence $4000 \mathrm{~cm}^{3} / \mathrm{kg} \quad \checkmark \mathrm{O}$	1SF substitution 1S volume 1S change formula 1 S simplification 1 R rounding OR 1SF substitution 1S simplification 1SF substitution 1S simplification 10 conclusion	$\begin{aligned} & \hline \text { L3 } \\ & \text { M } \end{aligned}$

Ques	Solution	Explanation	Level
4.1.3	Surface area of a rectangular-based box $\begin{aligned} & =2\left(575 \mathrm{~mm} \times 375 \mathrm{~mm}+\stackrel{\checkmark \mathrm{A}}{+575 \mathrm{~mm} \times 400 \mathrm{~mm}+375 \mathrm{~mm} \times} \begin{array}{l} 400 \mathrm{~mm}) \\ =1191250 \mathrm{~mm}^{2} \quad \checkmark \mathrm{CA} \end{array}\right. \end{aligned}$ Surface area of a square based box $\begin{aligned} & \quad \stackrel{\vee}{\mathrm{A}} \quad \begin{array}{r} \vee \mathrm{SF} \\ = \\ =2 \times 410 \mathrm{~mm}(2 \times 600 \mathrm{~mm}+410 \mathrm{~mm}) \\ =1320200 \mathrm{~mm}^{2} \quad \checkmark \mathrm{CA} \end{array} \end{aligned}$ The statement is not valid. $\quad \checkmark \mathrm{O}$ OR Surface area of a square based box $\begin{aligned} & \quad \checkmark \quad \checkmark \mathrm{SF} \\ & =4 \times 410 \mathrm{~mm} \times 600 \mathrm{~mm}+2 \times(410 \mathrm{~mm})^{2} \\ & =1320200 \mathrm{~mm}^{2} \quad \checkmark \mathrm{CA} \end{aligned}$ The statement is not valid. $\checkmark \mathrm{O}$	1SF substitute into formula 1A correct values 1CA simplification 1SF substitution 1A using the squared side (410) 1CA simplification 10 conclusion	$\begin{aligned} & \hline \mathrm{L} 4 \\ & \mathrm{M} \end{aligned}$
4.2.1	These places are far from Mbombela. OR There might not be many parcels to deliver to those places. OR $\checkmark \checkmark \mathrm{O}$ From Mbombela parcels might go to a central depot to be delivered from there.	2 O reason	L4 M\&P

Ques	Solution	Explanation	Level
4.2.2 (a)	Package to Graskop: Less than 30 kg @ R70,00 Package to Klerksdorp: 18 kg	1A Graskop R70	L3
	$15 \mathrm{~kg}+1$ excess of 5 A	1A splitting mass to Klerksdorp	
	$\checkmark \mathrm{A}$	1A R106	
	Delivery cost $\mathrm{R} 106,00+\mathrm{R} 15,00=\mathrm{R} 121,00$	1CA cost	
	Package to Port Alfred: 18 kg		
	$10 \mathrm{~kg}+2 \text { excess of }_{\checkmark \mathrm{A}}^{5 \mathrm{~kg}}$	1A splitting mass to PA	
	Delivery cost \quad R160,00 $+2 \times$ R15 $=$ R190	1A R160	
		1CA cost	
		1M adding	
	$V A T=R 381 \times 14 \% \quad \checkmark \mathrm{M}$	1M VAT	
	$=\mathrm{R} 53,34$	1CA total cost incl. VAT (For Port Alfred max 3	
	Total cost including VAT $=$ R434,34 $\checkmark \mathrm{CA}$ OR	marks if cost is calculated using R106-Cost R121 or R117 - Cost 132) OR	
	Prices with VAT Local: $\quad \mathrm{R} 70 \times 114 \%=\mathrm{R} 79,80$	1 M adding VAT to costs	
	Klerksdorp: R106 $\times 114 \%=$ R120,84 $\quad \checkmark \mathrm{M}$ Shaded areas:R160 $\times 114 \%=$ R182,40	1A Graskop cost	
	Excess label: $\mathrm{R} 15 \times 114 \%=\mathrm{R} 17,10$	Klerksdorp:	
		1A basic cost	
	To Graskop cost $=$ R79,80 $\quad \checkmark \mathrm{A}$	1A one excess label	
	To ${ }^{\text {r }}$	1CA cost Port Alfred	
	To Klerksdorp cost $=$ R120,84 $+\mathrm{R} 17,10=\mathrm{R} 137,94$	Port Alfred 1A basic cost	
	$\checkmark \mathrm{A} \quad \checkmark \mathrm{A} \quad \checkmark \mathrm{CA}$	1A two excess labels	
	To Port Alfred cost $=$ R182,40 $+2 \times \mathrm{R} 17,10=\mathrm{R} 216,60$	1CA cost	
		1 M adding	
	$\begin{gathered} \text { Total cost }=\mathrm{R} 79,80+\mathrm{R} 137,94+\mathrm{R} 216,60 \quad \text { M } \\ \\ =\mathrm{R} 434,34 \quad \checkmark \mathrm{CA} \end{gathered}$	1CA total cost incl. VAT (10)	

Ques	Solution	Explanation	Level
4.2.2 (b)	30 April from 14:50 to $24: 00$ is 9 hours $10 \mathrm{~min} \quad \checkmark \mathrm{~A}$ $\left.\begin{array}{ll}1 \text { May } & \text { is } 24 \text { hours } \\ 2 \text { May from 00:00 to } 8: 15 & \text { is } 8 \text { hours } 15 \mathrm{~min}\end{array}\right\} \checkmark \mathrm{A}$ Total elapsed time $=41$ hours $25 \mathrm{~min} \quad \checkmark \mathrm{CA}$ This is within the 48 hour service. $\checkmark \mathrm{O}$ OR 30 April from 14:50 To 1 May 14:50 (24 hours / 1st day) $\checkmark \mathrm{A}$ To 2 May 14:50 (48 hours / 2nd day) \checkmark A But 2 May 8:15 is before 48 hours. $\checkmark \mathrm{A}$ It is within 48 hours $\checkmark \mathrm{O}$	1A time 30 April 1A time 1 and 2 May 1CA adding time 10 opinion based on CA from 4.2.2 (a) OR 1A 1st day 1A 2nd day 1A conclusion 10 conclusion	$\begin{aligned} & \hline \mathrm{L} 4 \\ & \mathrm{M} \end{aligned}$
4.2.3 (a)	$\begin{aligned} & \text { Box size A: } \\ & \text { Number of boxes }=\frac{650}{7}=92,857 \\ & \approx 93 \quad \checkmark \mathrm{M} \\ & \text { Mass of box }=7 \times 2 \mathrm{~kg}=14 \mathrm{~kg} \\ & \quad \begin{array}{l} \mathrm{A} \end{array} \\ & \text { Cost }=\mathrm{R} 117,00 \times 93 \\ & \quad=\mathrm{R} 10881 \quad \checkmark \mathrm{CA} \end{aligned}$	1 M dividing 1 R rounding up 1A rate to George 1CA cost	$\begin{aligned} & \hline \text { L3 } \\ & \text { F } \end{aligned}$

Ques	Solution	Explanation	Level
4.2.3 (b)	Box size B: $\text { Number of boxes }=\frac{650}{15}=43,333^{\vee \mathrm{MA}}$ 43 boxes packed with 15 parts, mass 30 kg each $\quad \checkmark \mathrm{R}$ $\text { Number of parts left }=650-43 \times 15=5 \quad \checkmark \mathrm{CA}$ Mass of the parts $=5 \times 2 \mathrm{~kg}$ $=10 \mathrm{~kg}$ 1 box packed with the remaining 5 parts, mass 10 kg $\begin{aligned} & \text { Cost per } 30 \mathrm{~kg} \text { box }=\mathrm{R} 117+3 \times \mathrm{R} 15=\mathrm{R} 162 \\ & \begin{array}{l} \text { Cost } \end{array}=\mathrm{R} 162 \times 43+\mathrm{R} 117 \quad \checkmark \mathrm{M} \\ & \\ & =\mathrm{R} 7083 \quad \checkmark \mathrm{CA} \end{aligned}$ Box size B is more economical. $\checkmark \mathrm{O}$ OR (for the first part) Mass of all the parts $=650 \times 2 \mathrm{~kg}=1300 \mathrm{~kg}$ Mass of a box with 15 parts $=30 \mathrm{~kg}$ Number of boxes needed $=\frac{1300}{30}=43,33$	1MA dividing 1 R rounding down 1CA extra smaller box 1A cost per box 1M multiply and adding 1CA cost 10 advice	$\begin{aligned} & \hline \mathrm{L} 4 \\ & \mathrm{~F} \end{aligned}$
		[43]	
		TOTAL	150

