basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICAL LITERACY P2

NOVEMBER 2017
MARKING GUIDELINES

MARKS: 150

Symbol	Explanation
\mathbf{M}	Method
$\mathbf{M A}$	Method with accuracy
$\mathbf{C A}$	Consistent accuracy
\mathbf{A}	Accuracy
\mathbf{C}	Conversion
\mathbf{S}	Simplification
$\mathbf{R T}$	Reading from a table/ a graph / document/diagram
$\mathbf{S F}$	Correct substitution in a formula
\mathbf{O}	Opinion/Explanation
\mathbf{P}	Penalty, e.g. for no units, incorrect rounding off, etc.
\mathbf{R}	Rounding off
$\mathbf{N P R}$	No penalty for rounding
$\mathbf{A O}$	Answer only
$\mathbf{M C A}$	Method with constant accuracy

This marking guideline consist of $\mathbf{1 7}$ pages.

Ques	Solution	Explanation	T\&L
	NOTE: Calculated profit for 2015 is R343 002 thousand $\begin{array}{rlr} \text { Percentage profit } & =\frac{343002}{2250041} \times 100 \% \quad \checkmark \begin{array}{r} \mathrm{RT} \\ \\ \end{array} \begin{aligned} & \approx 15,24 \% \end{aligned} \quad \checkmark \mathrm{SF} \end{array}$ For 2016: $\begin{aligned} \text { Percentage profit } & =\frac{360651}{2403509} \times 100 \% \\ & =15,00518617 \% \quad \checkmark \mathrm{~A} \end{aligned}$ The profit decreased $\quad \checkmark \mathrm{O}$	1RT correct values 1SF substitution 1A percentage for 2015 1A percentage for 2016 10 comparison NPR	
1.2		1A correct bracket 1MCA amount above 1S simplification 1CA tax before rebate 1 M subtracting both rebates 1CA tax after rebate	$\begin{aligned} & \hline \text { F } \\ & \text { L3 } \end{aligned}$
1.3	Increase number of donors for 2017 $\begin{aligned} & =110000 \times 9,6 \% \\ & =10560 \quad \checkmark \mathrm{M} \end{aligned}$ Number of donors 2017 $\begin{aligned} & =110000+10560 \\ & =120560 \quad \checkmark \mathrm{CA} \end{aligned}$ Increase number of donors for 2018 $\begin{aligned} & =120560 \times 9,6 \% \\ & =11573,76 \quad \checkmark \mathrm{M} \end{aligned}$ Number of donors 2018 $\begin{aligned} & =120560+11573,76 \\ & =132133,76 \\ & \approx 132134 \quad \mathrm{CA} \end{aligned}$ OR Number of donors for 2017 $\begin{aligned} & =110000+(110000 \times 9,6 \%) \quad \checkmark \mathrm{M} \\ & =120560 \checkmark \mathrm{CA} \end{aligned}$ Number of donors for 2018 $\begin{aligned} & =120560+(120560 \times 9,6 \%) \quad \checkmark \mathrm{M} \\ & =132133,76 \\ & \approx 132134 \quad \checkmark \mathrm{CA} \end{aligned}$	1 M calculating 9,6\% 1CA calculating total donors for 2017 1 M calculating 9,6 \% of 2017 donors 1CA calculating donors for 2018 OR 1M multiplying correct values 1CA calculating donors for 2017 1 M multiplying correct \% to 2017 number 1CA calculating number for 2018	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~L} 3 \end{aligned}$

Ques	Solution	Explanation	T\&L
	Number of donors for 2017 $\begin{aligned} & =110000 \times 109,6 \% \vee \mathrm{M} \\ & =120560 \checkmark \mathrm{CA} \end{aligned}$ Number of donors for 2018 $\begin{aligned} & =120560 \times 109,6 \% \checkmark \mathrm{M} \\ & =132133,76 \\ & \approx 132134 \quad \checkmark \mathrm{CA} \end{aligned}$ OR Number of donors for 2018 $\begin{aligned} & \quad \checkmark \mathrm{M} \checkmark \mathrm{M} \\ &= \checkmark \mathrm{M} \\ &= 110000 \times 109,6 \% \times 109,6 \% \\ &= 132133,76 \\ & \approx 132134 \quad \checkmark \mathrm{CA} \end{aligned}$	OR 1M multiplying and adding percentages 1CA calculating total number for 2017 1 M multiplying and adding correct \% to 2017 number 1 CA calculating number for 2018 OR 1 M adding percentages 1 M multiplying correct numbers 1 M multiplying 109,6\% twice 1CA calculating number for 2018 NPR	
		AO	
1.4.1	Makes provision for other people who are not Asian, Black, Coloured or White. $\checkmark \checkmark \mathrm{O}$ OR Some donors don't indicate race. OR The percentage of the races do not add up to 100%. $\checkmark \checkmark$ O OR The other is 'mixed' race. $\checkmark \checkmark \mathrm{O}$ OR They are from other countries. $\quad \checkmark \checkmark \mathrm{O}$	2 O explanation	$\begin{array}{\|l\|} \hline \mathrm{D} \\ \mathrm{~L} 4 \end{array}$
1.4.2	As the years increase the percentage black donors increase. ${ }^{\checkmark} \mathrm{O}$	2 O increasing trend	$\begin{array}{\|l\|} \hline \mathrm{D} \\ \mathrm{~L} 4 \\ \hline \end{array}$
1.4.3	The number of donors are different every year. OR The graph represents percentages. $\checkmark \checkmark \mathrm{O}$ OR The percentages are rounded values. $\quad \checkmark \checkmark \mathrm{O}$ OR The graph shows that the bars' heights are not the same.	2 O explanation (2)	$\begin{array}{\|l\|} \hline \mathrm{D} \\ \mathrm{~L} 4 \end{array}$

Ques	Solution	Explanation	T\&L
1.4.4 (a)	The 2015 donors $\times 101,02 \%=490914$ $\begin{array}{rlrl} \text { Number of donors } & =\frac{490914}{101,02 \%} \checkmark \mathrm{~A} & \text { OR } \frac{490914}{1,0102} \\ & =485957,236 \ldots \\ & \approx 485957 \quad \checkmark \mathrm{~A} & \end{array}$	1MA dividing by $101,02 \%$ 1A number of donors NPR	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~L} 2 \end{aligned}$
1.4.4 (b)	$\begin{aligned} \% \text { white } & =100 \%-(8 \%+38 \%+5 \%+2 \%) \quad \checkmark \text { MA } \\ & =47 \% \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Number of white donors } & =485957 \times 47 \% \checkmark \mathrm{MCA} \\ & =228399,79 \ldots \\ & \approx 228400 \quad \checkmark \mathrm{CA} \end{aligned}$	CA from Q1.4.4 (a) 1MA subtracting from 100% 1CA percentage 1MCA \% calculation 1CA rounded number AO (4)	$\begin{aligned} & \hline \text { D } \\ & \text { L3 } \end{aligned}$
1.5.1	$\begin{aligned} & \mathrm{P}_{(\text {Blood Type O })}{ }^{\checkmark \mathrm{RT}} \\ & =(39+6) \% \\ & =45 \% \text { OR } \frac{9}{20} \text { OR } 0,45^{\checkmark} \mathrm{A} \end{aligned}$	1RT correct two values 1A calculating probability (2)	$\begin{aligned} & \hline \mathrm{P} \\ & \mathrm{~L} 2 \end{aligned}$
1.5.2	$\mathrm{AB}^{+} \quad \checkmark \checkmark \mathrm{A}$	2A correct blood type	$\begin{aligned} & \hline \mathrm{P} \\ & \mathrm{~L} 2 \end{aligned}$
1.5.3	No, it is NOT most likely. Can only receive blood from own blood group. $\quad \checkmark \checkmark \mathrm{O}$ OR $\mathrm{P}_{(\mathrm{O}}{ }^{-}$receiving blood from any donor) $=\frac{1}{8} \checkmark \mathrm{~A}$ \therefore It is NOT most likely.	10 verification 2 O explanation OR 1A numerator 1A denominator 10 verification (3)	$\begin{aligned} & \hline \mathrm{P} \\ & \mathrm{~L} 4 \end{aligned}$
		[40]	

QUESTION 2 [37 MARKS]

Ques	Solution	Explanation	T\&L
2.1.1	Inland prices have higher costs for transport / storage. OR Coastal storages are close by and transport fees are lower. OR Fuel is imported via harbours. $\quad \checkmark \checkmark$ O OR Most refineries are along the coast. $\quad \checkmark \checkmark$ O	2 O reason	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 4 \end{aligned}$
2.1.2		1 M multiplying 1A correct ratio 1CA storage cost 1M dividing 1A litres 1CA storage cost OR 1A basic fuel price 1M subtracting all from total 1CA storage cost	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 2 \end{aligned}$
		(3)	
2.1.3		1 M working with consumption rate 1A number of litres 1CA inland cost 1CA coastal cost 10 verification OR 1 M working with consumption rate 1A number of litres 1M difference 1A cost 10 verification	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~L} 4 \end{aligned}$

Ques	Solution	Explanation	T\&L
	Inland Cost $/ 100 \mathrm{~km}=7,3 \quad \ell \times \mathrm{R} 12,32 / \ell=\mathrm{R} 89,94 \quad \checkmark \mathrm{M}$ Number of 100 km distances $=1250 \mathrm{~km} \div 100 \mathrm{~km}=12,5$ Cost $=12,5 \times \mathrm{R} 89,94=\mathrm{R} 1124,20 \quad \checkmark \mathrm{~A}$ Coastal Cost $/ 100 \mathrm{~km}=7,31 \times \mathrm{R} 11,94=\mathrm{R} 87,16$ Number of 100 km distances $=1250 \mathrm{~km} \div 100 \mathrm{~km}=12,5$ Cost $=12,5 \times \mathrm{R} 89,94=\mathrm{R} 1089,53 \quad \checkmark \mathrm{~A}$ Difference $=\mathrm{R} 1124,50-\mathrm{R} 1089,53=\mathrm{R} 34,67 \quad \checkmark \mathrm{M}$ Statement is NOT valid. $\quad \checkmark \mathrm{O}$ OR Difference $=\mathrm{R} 12,32-\mathrm{R} 11,94=\mathrm{R} 0,38 \quad \checkmark \mathrm{M}$ Number of 100 km distances $=1250 \mathrm{~km} \div 100 \mathrm{~km}=12,5$ Cost $=\mathrm{R} 0,38 \times 7,3 \times 12,5=\mathrm{R} 34,68 \quad \checkmark \mathrm{M}$ Statement is NOT valid. $\checkmark \mathrm{O}$	OR 1 M working with consumption rate 1 A cost 1A cost 1 M difference 10 verification OR 1M difference 1M multiplying with consumption rate 1 M multiply with 12,5 1A cost 10 verification NPR	
2.2.1	$\begin{aligned} \% \text { increase } & =\frac{\mathrm{R} 70,9 \text { billion }-\mathrm{R} 54 \text { billion }}{\mathrm{R} 54 \text { billion }} \times 100 \% \checkmark \mathrm{~A} \\ & \approx 31,296 \% \quad \checkmark \mathrm{CA} \end{aligned}$ OR $\begin{aligned} & \frac{\text { R70,9 billion }}{\text { R54 billion }} \times 100 \%=131,2962 \% \quad \checkmark \mathrm{~A} \\ & \% \text { increase } \\ & =131,2962 \%-100 \% \\ & \approx \\ & \approx 31,296 \% \end{aligned}$ OR Using Trial \& Error: R54 billion $\times 31,3 \%=\mathrm{R} 16,9$ billion $\mathrm{R} 16,9$ billion +R 54 billion $=\mathrm{R} 70,9$ billion $\therefore \%$ increase $=31,3 \% \quad \checkmark \mathrm{CA}$	1M \% increase 1A correct values 1CA percentage OR 1M \% increase 1A correct values 1CA percentage OR 1M \% calculation 1 A increase amount 1CA percentage NPR	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 2 \end{aligned}$

Ques	Solution	Explanation	T\&L
2.2.2	$\begin{aligned} & 7+118=125 \quad \mathrm{~A} \\ & \frac{7}{125} \times \text { Total budgeted income }=\text { R } 70,9 \text { billion } \end{aligned}$ $\begin{aligned} \text { Total budgeted income } & =\mathrm{R} 70,9 \text { billion } \div \frac{7}{125} \checkmark \mathrm{M} \\ & =\mathrm{R} 1266,07 \text { billion } \\ & \approx \mathrm{R} 1266 \text { billion } \checkmark \mathrm{CA} \end{aligned}$ OR $\begin{array}{rlrl} 7: 118 & =\mathrm{R} 70,9 \text { billion : } x & \checkmark \mathrm{~A} \\ 7 x & =\mathrm{R} 70,9 \text { billion } \times 118 \\ x & =\frac{\mathrm{R} 70,9 \text { billion } \times 118}{7} & \checkmark \mathrm{~S} \\ & & & \\ & \approx \mathrm{R} 1195,17 \text { billion } & \checkmark \mathrm{CA} \end{array}$ $\begin{aligned} \text { Total budgeted income } & =\text { R1 195,17 billion }+ \text { R70,9 billion } \\ & =\text { R1 266,07 billion } \\ & \approx \text { R1 } 266 \text { billion } \quad \checkmark \mathrm{CA} \end{aligned}$	1 A adding ratio values 1A using ratio values 1 M dividing by ratio 1CA budget value OR 1A using proportion 1S changing subject 1CA other revenues 1CA rounded value in billion	$\begin{array}{\|l\|} \hline \text { F } \\ \text { L3 } \end{array}$
2.3.1	India $\quad \checkmark$ RT	2RT country	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~L} 2 \end{aligned}$
2.3.2	$\begin{array}{rl} 0,02 & 0,52 \quad \mathbf{0 , 6 3} \quad 0,91 \quad 1,12 \mathbf{1 , 2 3} \\ \mathrm{IQR} & =\mathrm{Q}_{3}-\mathrm{Q}_{1} \checkmark \mathrm{M} \\ & \checkmark \mathrm{VA}^{\checkmark} \quad 2,17 \mathbf{2 , 9 7} \\ & =2,97-0,624,11 \\ & =2,34 \quad \checkmark \mathrm{CA} \end{array}$	1 M use formula of IQR 1A lower quartile 1A upper quartile 1CA IQR AO [Accept 58-7 = 51] (4)	$\begin{aligned} & \hline \text { D } \\ & \text { L3 } \end{aligned}$
2.3.3	Countries with high rankings are developed (rich, $1^{\text {st }}$ world) as well as underdeveloped/developing (poor, $3^{\text {rd }}$ world). OR Countries with low rankings are developed (rich) as well as underdeveloped/ developing (poor). OR Counties listed are from all over the world (different continents). OR Rankings show the sample was chosen randomly.	2 O valid reason	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~L} 4 \end{aligned}$

Ques	Solution	Explanation	T\&L
2.3.4	$\left.\begin{array}{rl} \text { India: Mean Daily wage } & =\frac{236,51}{93,76 \%} \stackrel{\checkmark \text { RT }}{\checkmark \text { MA }} \\ & \approx 252,25 \text { Rouble } \checkmark \mathrm{A} \end{array}\right] \begin{aligned} & \text { SA: Mean Daily wage }=\frac{237,35}{26,20 \%} \\ & \approx 905,92 \text { Rouble } \checkmark \mathrm{A} \\ & \begin{aligned} \text { Difference } & =(905,92-252,25) \text { Russian Rouble } \\ & =653,67 \text { Russian Rouble } \checkmark \mathrm{CA} \end{aligned} \end{aligned}$	1RT reading both values 1MA dividing by \% 1A Indian day wage 1A SA day wage 1 M subtracting 1CA difference in Rouble	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 3 \end{aligned}$
2.3.5	1 South African Rand $=0,070$ Euro $\therefore \frac{6,46528}{0,07}=\mathrm{R} 92,36$ Learner solution is incorrect $\checkmark \mathrm{O}$ OR $\begin{aligned} 1 \text { Russian Rouble } & =\frac{0,016}{0,070} \text { Rand } \quad \checkmark \mathrm{C} \\ & =\mathrm{R} 0,2285714286 \quad \checkmark \mathrm{~A} \end{aligned}$ $\begin{aligned} \text { Range } & =425,52-21,44 \quad \checkmark \mathrm{~A} \\ & =404,08 \text { Russian Rouble } \\ & =404,08 \times 0,2285714286 \text { rand } / \text { rouble } \checkmark \mathrm{C} \\ & =\mathrm{R} 92,36 \quad \checkmark \mathrm{~A} \end{aligned}$ Learner solution is incorrect $\checkmark \mathrm{O}$ OR Max. value to rand: $425,52 \times 0,016 \div 0,07=R 97,26^{\checkmark}$ CA Min. value to rand: $21,44 \times 0,016 \div 0,07=\mathrm{R} 4,90 \quad \checkmark \mathrm{CA}$ Range $=$ R97, $\sqrt{\checkmark} \mathrm{M}-\mathrm{R} 4,90=\mathrm{R} 92,36 \quad \checkmark \mathrm{CA}$ Learner solution is incorrect. $\checkmark \mathrm{O}$	1A range 1M multiplication 1C convert to Euro 1C convert to rand 1 A rand value 10 verification OR 1 C dividing by 0,07 1A conversion factor 1A range 1C conversion 1A rand value 10 verification OR 1C conversion 1CA max value 1CA min value 1 M subtracting 1CA rand value 10 verification NPR	$\begin{array}{\|l\|} \hline \mathrm{D} \\ \mathrm{~L} 4 \end{array}$
		[37]	

QUESTION 3 [40 MARKS]			
Ques	Solution	Explanation	T\&L
3.1.1	$33^{\checkmark \checkmark \mathrm{A}} \text { Kwela Street } \checkmark \mathrm{A}$	2 A correct number 1A correct street	$\begin{array}{\|l\|} \hline \text { MP } \\ \text { L2 } \\ \hline \end{array}$
3.1.2		1A length 1A width 1A measured scale 1 M using the scale 1CA length in m 1CA width in m OR 1A measured scale 1M unit scale 1A length 1A width 1CA length in m 1CA width in m (6)	$\begin{array}{\|l\|} \hline \text { M } \\ \text { L3 } \end{array}$
3.1.3	$\begin{aligned} & \text { On the enlarged map: } \\ & \text { Measured length } \left.=62 \mathrm{~mm}^{\checkmark} \mathrm{MCA}_{(61 \mathrm{~mm}} \text { to } 64 \mathrm{~mm}\right) \\ & \text { Scaled length }=62 \mathrm{~mm} \div 5=12,4 \mathrm{~mm} \neq 22 \mathrm{~mm} \\ & \therefore \quad \text { NOT valid } \quad \checkmark \mathrm{O} \end{aligned}$ OR On the enlarged map: The measured width $=24 \stackrel{\checkmark}{\mathrm{~mm}} \quad(23 \mathrm{~mm}$ to 26 mm$)$ $\checkmark \mathrm{M}, \checkmark \mathrm{CA}$ $\text { widths: } 9 \mathrm{~mm} \times 5=45 \mathrm{~mm} \neq 24 \mathrm{~mm}$ \therefore NOT valid $\checkmark \mathrm{O}$ OR	CA from Q3.1.2 1MCA measured length 1 M dividing by 5 1CA simplification 10 verification OR 1A measured length 1 M multiplying with 5 1CA simplification 10 verification	MP

Ques	Solution	Explanation	T\&L
		OR 1A measured 1M dividing 1CA scale factor 10 verification	
3.2.1		1MA subtracting of thickness 1CA internal length 1CA internal width 1MCA substitution 1C conversion 1CA internal area in m^{2} OR 1 C conversion of all values 1MA subtracting thickness 1CA length 1CA width 1MCA substitution 1CA internal area in m^{2}	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~L} 3 \end{aligned}$
3.2.2	$\begin{aligned} \text { Area of Ceiling board } & =2400 \mathrm{~mm} \times 900 \mathrm{~mm} \\ & =2160000 \mathrm{~mm}^{2} \checkmark \mathrm{~A} \\ \text { Number of boards needed } & =\frac{17280000}{2160000} \checkmark \mathrm{M} \\ & =8 \quad \checkmark \mathrm{CA} \end{aligned}$ \therefore Need more than $7 \checkmark \mathrm{O}$ OR $\begin{aligned} \text { Number needed } & =4800 \mathrm{~mm} \div 2400 \mathrm{~mm} \quad \checkmark \mathrm{M} \\ & =2 \text { for length } \checkmark \mathrm{CA} \end{aligned}$ $\text { Number needed }=3600 \mathrm{~mm} \div 900 \mathrm{~mm}$ $=4 \text { for width }$ Total needed $=2 \times 4=8 \checkmark \mathrm{CA}$ \therefore Need more than $7 \quad \checkmark \mathrm{O}$ OR	CA from Q3.2.1 1SF substitution 1 A area of board 1 M dividing 1CA number of boards 10 deduction OR 1 M dividing 1CA number length wise 1CA number width wise 1CA number of boards 10 deduction	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~L} 4 \end{aligned}$

Ques	Solution	Explanation	T\&L
		1SF substitution 1A area of board 1M multiplying 1CA total area 10 deduction	$\begin{aligned} & \hline \mathrm{M} \\ & \mathrm{~L} 4 \end{aligned}$
3.2.3	$\begin{aligned} \text { Length of cornice } & =2 \times(4800 \stackrel{\checkmark}{\mathrm{CA}}+3600 \mathrm{~mm}) \\ & =16800 \mathrm{~mm} \quad \checkmark \mathrm{CA} \end{aligned}$	1CA values from Q 3.2.1 or RT if reworked 1SF substitution 1CA length	$\begin{aligned} & \hline \text { M } \\ & \text { L2 } \end{aligned}$
3.2.4	$16800 \div 2000=8,4$ \checkmark CA Hence 9 lengths cornice needed. $\begin{aligned} \text { Total cost } & =8 \times \mathrm{R} 91,44+9 \times \mathrm{R} 53,64 \\ & =\mathrm{R} 731,52+\mathrm{R} 482,76 \\ & =\mathrm{R} 1214,28 \quad \checkmark \mathrm{CA} \end{aligned}$ The statement is correct. $\checkmark \mathrm{O}$	CA from Q3.2.3 and Q3.2.2 1CA number of lengths 1 A using 2 correct prices 1 M multiplying 1CA cost 10 conclusion	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 4 \end{aligned}$
3.3.1	Above ground is a higher security risk OR Safety reasons $\quad \checkmark \checkmark$ O OR Below the ground the cost will be less. $\quad \checkmark \checkmark \mathrm{O}$ OR Above the ground it takes up space. OR Underground, the water stays cooler/fresher than in direct sun/ lessen evaporation. $\checkmark \checkmark \mathrm{O}$ OR Aesthetic reasons. $\checkmark \checkmark \mathrm{O}$ OR Below the ground for water to easily run into it. OR Less maintenance $\checkmark \checkmark$ O	2 O reason	$\begin{aligned} & \text { MP } \\ & \text { L4 } \end{aligned}$

Ques	Solution	Explanation	Level
3.3.2	$\begin{aligned} 8000 \ell & =8000000 \mathrm{~cm}^{3} \\ & =8 \mathrm{~m}^{3} \quad \checkmark \mathrm{C} \end{aligned}$	1C Conversion	$\begin{aligned} & \hline \text { M } \\ & \text { L3 } \end{aligned}$
	Volume of a cylindrical tank $=\pi \times$ radius $^{2} \times$ length		
	$8 \mathrm{~m}^{3}=3,142 \times$ radius $^{2} \times 2,9 \mathrm{~m} \quad \checkmark \mathrm{SF}$	1SF substitution	
	$\begin{aligned} (\text { radius })^{2} & =\frac{8 \mathrm{~m}^{3}}{3,142 \times 2,9 \mathrm{~m}} \checkmark \mathrm{~A} \\ & =0,87798239 \ldots \mathrm{~S} \end{aligned}$	1A change subject of formula 1S simplification	
	$\text { Radius }=\sqrt{0,87798239}$		
	$\approx 0,937 \mathrm{~m} \quad \checkmark \mathrm{CA}$	1CA radius	
	Diameter $=1,874 \mathrm{~m} \quad \checkmark \mathrm{CA}$	1CA diameter	
	OR	OR	
	Volume of a cylindrical tank $=\pi \times$ radius $^{2} \times$ length		
	$8000000 \mathrm{~cm}^{3}=3,142 \times$ radius $^{2} \times 290 \mathrm{~cm} \quad \checkmark \mathrm{SF}$	1SF substitution	
	$(\text { radius })^{2}=\frac{8000000 \mathrm{~cm}^{3}}{3,142 \times 290 \mathrm{~cm}} \checkmark \mathrm{~A}$	1A change subject of formula	
	$=8779,8239 \ldots \checkmark \mathrm{~S}$	1S simplification	
	$\text { Radius }=\sqrt{8779,8239}$		
	$\approx 93,7 \mathrm{~cm} \quad \checkmark \mathrm{CA}$	1CA radius	
	Diameter $=187,4 \mathrm{~cm} \quad \checkmark \mathrm{CA}$	1CA doubling the radius	
	$=1,874 \mathrm{~m} \quad \checkmark \mathrm{C}$	1C conversion to m NPR	
		(6)	
		[40]	

QUE	ON 4 [33 MARKS]		
Ques	Solution	Explanation	T\&L
4.1.1	Dineo's maximum wind speed is 95 (MPH)		$\begin{aligned} & \hline \text { M } \\ & \text { L2 } \end{aligned}$
	$95 \mathrm{MPH}=\frac{80,4672}{50} \times 95 \mathrm{~km} / \mathrm{h} \quad \checkmark \mathrm{C}$	1C conversion	
	$\begin{aligned} & =152,887 \ldots \mathrm{~km} / \mathrm{h} \quad \checkmark \mathrm{CA} \\ & =152,89 \mathrm{~km} / \mathrm{h} \quad \checkmark \mathrm{R} \end{aligned}$	1CA simplification 1 R rounding	
	OR	OR	
	$\begin{aligned} 50 \text { mile } & =80,4672 \mathrm{~km} \\ 1 \text { mile } & =1,609344 \mathrm{~km} \end{aligned}$		
	$95 \mathrm{MPH}=95$ miles $/$ hour $\times 1,609344^{\checkmark} \mathrm{C}$	1 C conversion	
	$=152,88768 \mathrm{~km} / \mathrm{h} \quad \checkmark \mathrm{CA}$	1CA simplification	
	$\approx 152,89 \mathrm{~km} / \mathrm{h} \checkmark \mathrm{R}$	1 R rounding	
	OR	OR	
	$\begin{aligned} 95 \text { miles }-50 \text { miles } & =45 \text { miles } \\ 50 \text { miles } & =80,4672 \mathrm{~km} \\ 45 \text { miles } & =x \mathrm{~km} \end{aligned}$		
	$\begin{aligned} x \mathrm{~km} & =80,4672 \mathrm{~km} \times 45 \text { miles } \div 50 \text { miles } \\ & =72,4205 \mathrm{~km} \quad \checkmark \mathrm{C} \end{aligned}$	1C conversion	
	$\begin{aligned} \text { Total distance } & =80,4672 \mathrm{~km}+72,4205 \mathrm{~km} \\ & =152,887 \mathrm{~km} \quad \checkmark \mathrm{CA} \end{aligned}$	1CA simplification	
	$\therefore 95 \mathrm{MPH}=152,89 \mathrm{~km} / \mathrm{h} \quad \checkmark \mathrm{R}$	1 R rounding	
		AO	
		(3)	
4.1.2			
	Measured distance between gridlines is $17 \mathrm{~mm} \checkmark \mathrm{~A}$	1A distance between	Meas L3 (3)
	Measured distance between P and Q is $39 \checkmark \mathrm{~A}$	1A distance P to Q	
	$\text { Actual distance }=\frac{205,043 \mathrm{~km}}{7 \mathrm{VN}} \times 39 \mathrm{~mm}^{\checkmark} \mathrm{MCA}$	1 M using scale 1MCA using correct values	
	$\begin{gathered} 17 \mathrm{~mm} \\ \approx 470,39 \mathrm{~km} \quad \checkmark \mathrm{CA} \end{gathered}$	1CA actual distance	
	Distance $=$ Ave. speed \times time		
	$\text { Ave. speed }=\frac{470,39 \mathrm{~km}}{24 \text { hours }} \quad \checkmark \mathrm{S} \underset{\checkmark \text { SF }}{ }$	1S changing the subject of	
	$\approx 19,56 \mathrm{~km} / \mathrm{h} \quad \checkmark \mathrm{CA}$	1SF substitution	
	(Accept 16 mm to 18 mm for gridlines and 38 mm to 42 mm for PQ distance) OR	1CA Ave speed NPR (8)	

Ques	Solution	Explanation	T\&L
	OR App. distance from P to Q is $2 \frac{1}{3}$ gridlines $\checkmark \mathrm{A}$ $\begin{aligned} \text { Distance } & =2 \frac{1}{3} \times 205,043 \mathrm{~km} \checkmark \mathrm{M} \quad \checkmark \mathrm{~A} \\ & =478,4336667 \mathrm{~km} \quad \checkmark \mathrm{CA} \end{aligned}$ Distance $=$ Ave. speed \times time $478,4336667 \mathrm{~km}=$ Ave. speed $\times 24$ hours Ave. speed $\approx 19,93 \mathrm{~km} / \mathrm{h}$ \checkmark CA \checkmark S (Accept $2 \frac{1}{6}$ up to $2 \frac{1}{3}$) OR $\begin{gathered} \begin{array}{c} \checkmark \mathrm{A} \\ 18 \mathrm{~mm} \\ =205,043 \\ 1 \mathrm{~mm} \end{array}=11,39 \end{gathered}$ $\checkmark \mathrm{M}$ Measured distance from the gridline to Q is $3 \stackrel{\mathrm{~mm}}{\mathrm{~m}}$ Distance from P to Q $\begin{aligned} & =205,043+205,043+3 \times 11,39 \\ & =444,256 \mathrm{~km} \quad \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Ave. speed } & =\frac{444,256 \mathrm{~km}}{24 \text { hours }} \quad \checkmark \mathrm{SF} & \checkmark \mathrm{~S} \\ & \approx 18,51 \mathrm{~km} / \mathrm{h} & \checkmark \mathrm{CA} \end{aligned}$	2A distance P to Q 1M multiplying 1 A using correct values 1CA actual distance 1SF substitution 1S changing the subject of the formula 1CA ave. speed OR 1A distance between gridlines 1M unit scale 1A distance to Q 1M using scale 1CA actual distance 1SF substitution 1S changing the subject of the formula 1CA Ave speed NPR	
4.2.1	$10 \checkmark \checkmark \mathrm{RT}$	2 RT correct value	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~L} 2 \end{aligned}$

Ques	Solution	Explanation	T\&L
4.2.4	Western Pacific: Total storms $=39+30+52+34+40=195 \quad$ A Damages in million USD $\quad \checkmark$ RT $=10200+8410+22800+6080+10600=58090^{\checkmark} \mathrm{MCA}$ North Atlantic: Total storms $=12+9+13+19+19=72 \quad$ CA Damages in million USD $\quad \checkmark$ RT $=590+232+1510+75000+21000=98332 \quad \checkmark \mathrm{CA}$ NOT valid statement, $\checkmark \mathrm{O}$ Western Pacific had the most storms but North Atlantic had the greatest amount of damages.	1A number of storms WP 1RT using amounts from table 1MCA adding amounts 1CA number of storms in NA 1 RT only using values to 2011 1CA amount of damage 10 not valid 2 O reason	$\begin{aligned} & \mathrm{D}(4) \\ & \mathrm{F}(4) \\ & \mathrm{L} 4 \end{aligned}$
4.3	Growth rate per $1000=38,3-11,9-1,9 \quad$ MA $=24,5 \quad \checkmark \mathrm{CA}$ $\begin{aligned} \therefore \text { percentage growth rate } & =\frac{24,5}{1000} \times 100 \% \quad \checkmark \mathrm{MCA} \\ & =2,45 \% \checkmark \mathrm{CA} \end{aligned}$ OR Percentage growth rate $\begin{aligned} & =\left(\frac{38,3}{1000}-\frac{11,9}{1000}-\frac{1,9}{1000}\right) \times 100 \% \quad \checkmark \mathrm{M} \\ & =\frac{24,5}{1000} \times 100 \% \\ & =2,45 \% \quad \checkmark \mathrm{CA} \end{aligned}$	1MA subtracting rates 1CA growth rate 1MCA calculating percentage $(\div 1000 \times 100)$ 1CA simplification OR 1MA subtracting rates 1 M calculating percentage 1CA growth rate 1CA simplification AO	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~L} 2 \end{aligned}$
		[33]	
		TOTAL : 150	

