basic education

Department:
Basic Education REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFICATE EXAMINATIONS

MATHEMATICAL LITERACY P2

2017

MARKING GUIDELINES

MARKS: 150

Codes	Explanation
\mathbf{M}	Method
$\mathbf{M A}$	Method with Accuracy
$\mathbf{C A}$	Consistent Accuracy
\mathbf{A}	Accuracy
\mathbf{C}	Conversion
\mathbf{D}	Define
\mathbf{J}	Justification/Reason/Explain
\mathbf{S}	Simplification
$\mathbf{R D}$	Reading from a table OR a graph OR a diagram OR a map OR a plan
\mathbf{F}	Choosing the correct formula
$\mathbf{S F}$	Substitution in a formula
\mathbf{O}	Opinion
\mathbf{P}	Penalty, e.g. for no units, incorrect rounding off, etc.
\mathbf{R}	Rounding Off
$\mathbf{N P}$	No penalty for rounding OR omitting units
$\mathbf{M C A}$	Method with consistent accuracy

These marking guidelines consist of $\mathbf{1 5}$ pages.

KEY TO TOPIC SYMBOL:

F = Finance; $\mathbf{M}=$ Measurement; $\mathbf{M P}=$ Maps, plans and other representations DH = Data Handling; P = Probability.

QUESTION 1 [39 Marks]			
Ques	Solution	Explanation	T\&L
1.1.1	$$	1A numerator 1A denominator 1CA simplification AO	$\begin{aligned} & \hline \mathrm{P} \\ & \mathrm{~L} 2 \end{aligned}$
1.1.2	6 members scores decreased. $\begin{aligned} \text { As a percentage } & =\frac{\mathbf{6}}{\mathbf{1 5}} \checkmark \mathrm{A}^{1} 100 \% \checkmark \mathrm{MA} \\ & =40 \% \quad \checkmark \mathrm{CA} \end{aligned}$	1A no. decreased 1MA percentage with denominator 15 1CA simplification AO	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~L} 2 \end{aligned}$
1.1.3 (a)	Arranging scores in ascending or descending order: $\begin{aligned} & 27 ; 28 ; 30 ; \mathbf{3 2} ; 34 ; 38 ; 41 ; \mathbf{4 2} ; 43 ; 43 ; 44 ; \mathbf{4 6} ; 53 ; 56 ; \\ & 62 \checkmark \text { MA } \\ & \text { Median is } 42 . \end{aligned}$	1MA ordered data 2A median AO	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~L} 2 \end{aligned}$
$\begin{gathered} 1.1 .3 \\ \text { (b) } \end{gathered}$	$43^{\checkmark \checkmark \mathrm{A}}$	2A mode (2)	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~L} 2 \end{aligned}$
$\begin{gathered} 1.1 .3 \\ \text { (c) } \end{gathered}$	$\begin{aligned} \mathrm{IQR} & =\text { upper quartile }- \text { lower quartile } \\ & =\mathrm{Q}_{3}-\mathrm{Q}_{1} \\ & \checkmark \checkmark \mathrm{RT} \\ & =46-32 \checkmark \mathrm{RT} \\ & =14 \quad \checkmark \mathrm{CA} \end{aligned}$	CA from 1.1.3(a) 1RT 46 1RT 32 $1 \mathrm{CA} \operatorname{IQR}$ value	$\begin{aligned} & \text { D } \\ & \text { L3 } \end{aligned}$
1.1.4	The interquartile range of $1^{\text {st }}$ tournament is smaller than that of the $2^{\text {nd }}$ tournament (i.e. 14 compared to 50) $\checkmark \checkmark$ J Range of scores is smaller (i.e. 35) in the $1^{\text {st }}$ tournament compared to a range of 90 points scored in $2^{\text {nd }}$ tournament. Majority improved their scores. OR	2J comparison 2J comparison	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~L} 4 \end{aligned}$

Ques	Solution	Explanation	T\&L
	Highest score by a player in $1^{\text {st }}$ tourradident is 38 points less than a player in $2^{\text {nd }}$ tournament. $\checkmark \checkmark J$ The interquartile range of $2^{\text {nd }}$ tournament is higher than that of the $1^{\text {st }}$ tournament (i.e. 50 points higher than 14 points). The lowest score of tournament 2 is 17 less than the lowest score in tournament 1 . OR $\checkmark \checkmark J$ Players' performance in Tournament 1 were more consistent because the IQR is smaller and also the range is smaller. $\checkmark \checkmark J$	2J comparison 2J comparison OR 2J comparison 2J comparison	
1.2.1	```\(\checkmark\) MA Points : \(3 \times 1=3\) \(8 \times 2=16\) \(3 \times 3=9 \quad \checkmark \mathrm{M} \quad \checkmark \mathrm{A}\) Point scored \(=3+16+9=28\) Player F \(\quad \checkmark \mathrm{CA}\) OR \(\checkmark\) MA \(\quad \checkmark\) M \(\quad \checkmark\) A \(3 \times 1+8 \times 2+3 \times 3=28\) points Player F \(\quad\) CA```	1MA point in relation to position (multiply) 1 M adding points 1A accumulated points 1CA player 1MA balls multiply by points 1 M adding 1A total points 1CA player AO	$\begin{aligned} & \text { D } \\ & \text { L3 } \end{aligned}$
1.2.2		1MAwriting in correct ratio 1C convert cm to m 1CA simplification (no units) OR 1MAwriting in correct ratio 1 C convert m to cm 1CA simplification (no units)	$\begin{aligned} & \hline \text { M } \\ & \text { L2 } \end{aligned}$

Ques	Solution	Explanation	T\&L
1.2.3	$\begin{aligned} \text { Area of circle (hoop) } & =\pi \times \text { (radius) }^{2} \\ & =3,142 \times(22,5)^{2} \quad \checkmark \mathrm{SF} \\ & =1590,6375 \mathrm{~cm}^{2} \checkmark \mathrm{CA} \end{aligned}$ Area occupied by the ball $=\pi \times(\text { radius })^{2}$ $\begin{array}{r} =3,142 \times(12,4)^{2} \\ \checkmark \mathrm{~A} \\ =483,11392 \mathrm{~cm}^{2} \\ \checkmark \mathrm{M} \\ 1590,6375-483,11392 \mathrm{~cm}^{2} \\ =1107,52358 \mathrm{~cm}^{2} \quad \checkmark \mathrm{CA} \end{array}$ $\text { Shaded area }=1590,6375-483,11392 \mathrm{~cm}^{2}$	1A radius hoop 1A radius ball 1 M subtracting 1SF correct values 1CA area in cm^{2} 1CA area occupied by the ball 1CA simplification OR 1A radius 1 SF correct values 1CA area 1A radius of a ball 1CA area occupied by the ball 1 M difference 1CA simplification NPR	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~L} 3 \end{aligned}$
1.3	Proportional price money: $\text { Y group share R8,1 mil } \times \frac{\checkmark \mathrm{M}}{9}=\mathrm{R} 2,7 \mathrm{mil} \mathrm{CA}$ Each member of Y group will receive $=\frac{2,7 \text { million }}{5 \checkmark \mathrm{M}}$ $\begin{aligned} & =\mathrm{R} 0,54 \mathrm{mil} . \checkmark \mathrm{CA} \\ \checkmark \mathrm{C} & \\ 0,54 \times 1000000 & =\mathrm{R} 540000 \end{aligned}$ The player was correct. ${ }^{\vee} \mathrm{O}$	1MA getting 9 1M multiply by ratio 1CA price money to share 1M divide by 5 1CA each member's share 1C to 1000's 10 conclusion based on calculation	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 4 \end{aligned}$

Ques	Solution	Explanation	T\&L
	OR Group Y receives $\frac{3}{9}$ of the share $\quad \checkmark \checkmark$ MA Each member receives $\frac{1}{5} \quad \checkmark \mathrm{~A}$ A player from $\begin{aligned} \mathrm{Y} & =\frac{3}{45} \times \mathrm{M} \\ & =0,54 \text { million } \checkmark \mathrm{CA} \\ & =\mathrm{R} 540000 \quad \checkmark \mathrm{C} \end{aligned}$ The statement is correct $\quad \checkmark \mathrm{O}$	2MA correct ratio 1A each member's share 1M multiply with ratio 1CA simplification 1C conversion 10 conclusion [max 4 marks if divided by 15 first to get $0,54 \mathrm{mil}$ Max 5 marks if dividing by 3 instead of working with the ratio $\frac{3}{9}$]	
		[39]	

QUESTION 2 (37)

Ques	Solution	Explanation	T\&L
$\overline{2.1 .1}$ (a)	$\begin{aligned} & \checkmark \mathrm{RT} \\ & \text { Amount } \times(106,18 \%)=\mathrm{R} 14,44 \\ & \mathrm{~K}=\mathrm{R} 14,44 \div 106,18 \% \text { or } 1,0618 \\ &=\mathrm{R} 13,599 \\ &=\mathrm{R} 13,60 \quad \checkmark \mathrm{R} \end{aligned}$	1 RT correct values 1A dividing by $106,18 \%$ or dividing by 1,0618 1 R value in rand	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 2 \end{aligned}$
$2.1 .1$ (b)	$\begin{aligned} \mathrm{Q} & =\frac{\begin{array}{r} \checkmark \mathrm{RT} \\ \mathrm{R} 11,50-\mathrm{R} 10,88 \end{array}}{\mathrm{R} 10,88} \times 100 \% \\ & =5,7 \quad \checkmark \mathrm{CA} \end{aligned}$ OR $\begin{aligned} - & 0,81+12,2+7,82+2,28+6,18+5,24+10,07+11,34 \\ + & \mathrm{Q}=6,00 \times 10 \quad \checkmark \mathrm{M} \\ \mathrm{Q} & =60-54,32 \\ & \checkmark \mathrm{M} \end{aligned}$	1RT correct values 1 M subtracting values 1F percentage change 1CA simplification OR 1 RT correct values 1M mean concept 1 M subtracting values 1CA simplification NPR	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~L} 2 \end{aligned}$
$\begin{aligned} & \text { 2.1.1 } \\ & \text { (c) } \end{aligned}$	$\begin{aligned} & \begin{array}{l} \mathrm{E}= \\ \frac{0,99+17,32+15,07+5,99+9,42+8,16+4,46+9,04+10,27+15,64}{10} \checkmark \mathrm{MCA} \\ \\ =\frac{96,36}{10} \\ \quad=9,64 \checkmark \mathrm{CA} \end{array} \\ & \hline \end{aligned}$	1MA adding values 1MCA mean concept $\div 10$ 1CA mean value	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~L} 2 \end{aligned}$
2.1.2	Apr. 2015 to Jan. 2016: both prices increased. Jan. 2016 to Apr. 2016: The price of the 600 g loaf of white bread remained the same (is constant). The price of the 700 g loaf of white bread increased OR	2 J both increased 1J 600 g constant 1J 700 g increased	$\begin{aligned} & \hline \text { D } \\ & \text { L4 } \end{aligned}$

Ques	Solution	Explanation	T\&L
	```Per period per bread 600 g : Apr 2015 - Jan 2016 : The price increased. \(\checkmark\) J Jan 2016 - Apr 2016: The price remained the same. \({ }^{\checkmark \text { J }}\) 700 g : Apr 2015 - Jan 2016 : The price increased. \(\checkmark\) J Jan 2016 - Apr 2016 The price increased. \(\checkmark\) J```	600 g :   1J increased   1J constant   700 g :   1 J increased   1 J increased   (4)	
2.1.3	He will have to adjust his spending to cater for the increased price. That is money that he was saving to use for other things will be used for wheat products.   OR $\quad \checkmark \checkmark$ J   Will experience financial difficulties (i.e. unable to afford bread any longer).   OR   If he buys the wheat products it will cost him more and he will have less money to spend on other stuff $\checkmark \checkmark$ J	2J explanation   OR   2J explanation	$\begin{aligned} & \hline \text { F } \\ & \text { L4 } \end{aligned}$
2.2		1MA multiplying correct values 1A increase amount   1M adding 1CA increased price   1CA increase \%   1CA increased price   OR   1MA multiplying correct values   1A increase amount 1 M adding 1CA increased price 1CA increase \% 1CA increased price	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 3 \end{aligned}$


Ques	Solution	Explanation	T\&L
2.3.1	$\begin{aligned} & \mathrm{V}=690 \mathrm{~mm} \times 445 \mathrm{~mm} \times 180 \mathrm{~mm} \\ & \checkmark \checkmark \mathrm{SF} \\ &=55269000 \mathrm{~mm}^{3} \end{aligned}$	1SF correct values   2CA volume   $P$ if unit is wrong	$\begin{aligned} & \hline \mathrm{M} \\ & \mathrm{~L} 2 \end{aligned}$
2.3.2	Number of crates lengthwise $\begin{aligned} & =\frac{2}{0,69} \checkmark \mathrm{M}_{\checkmark \mathrm{C}} \\ & =2,89 \\ & \therefore 2 \text { crates } \checkmark \mathrm{CA} \end{aligned}$ $\text { or } \frac{2000}{690}$ $=2,89$   Number of crates breadthwise $\begin{aligned} & \quad \frac{2}{0,445}=4,4 \\ & \therefore 4 \text { crates } \checkmark \mathrm{CA} \end{aligned}$ $\text { or } \frac{2000}{445}$ $=4,4$   Now the remaining space is $0,62 \mathrm{~m} \times 2 \mathrm{~m}$ $\therefore$ Turn crates: 1 more fit in $\left(\frac{0,62}{0,445}\right)$ and two down   Total $\quad \checkmark \mathrm{M}$   $=(2$ Lengthwise $\times 4$ breadth wise +2$) \times 9$ on top of each $=90 \text { crates } \checkmark \mathrm{CA}$ other   $\therefore 80$ will fit $\quad \checkmark \mathrm{J}$   Layout:	1C conversion 1 M dividing   1CA number length wise   1CA number   1 M finding the total number 1CA number of crates   1 J conclusion	$\begin{aligned} & \text { M } \\ & \text { L3 } \end{aligned}$


Ques	Solution	Explanation	T\&L
2.3.3	$\text { Number of loaves }=80 \times 8=640$ $\begin{array}{rlrl} \text { Cost price per bread } & =\frac{\mathrm{R} 5350}{640} \quad \checkmark \mathrm{M} \\ & =\mathrm{R} 8,36 & \checkmark \mathrm{CA} \end{array}$ $\begin{aligned} \text { Number of loaves to break even } & =\frac{\mathrm{FC}}{\mathrm{SP}-\mathrm{CP}} \\ & =\frac{\mathrm{R} 1720,70}{\mathrm{R} 11,50-\mathrm{R} 8,36} \\ & =548 \checkmark \mathrm{SA} \end{aligned}$	1A total number of loaves   1M dividing   1CA cost price   1SF substitution (at least 2 correct values)   1CA number of whole loaves	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 3 \end{aligned}$
		[37]	

## QUESTION 3 (38 marks)

Ques	Solution	Explanation	T\&L
3.1.1	$\begin{aligned} \text { Total population } & =\frac{22574500}{41,1 \%} \checkmark \mathrm{RT} \\ & =54925790,75 \quad \checkmark \mathrm{CA} \\ & \approx 54925800 \text { people }{ }^{\checkmark \mathrm{R}} \end{aligned}$	1RT correct values 1 M dividing by \% 1CA population 1R number of people	$\begin{aligned} & \hline \text { D } \\ & \text { L3 } \end{aligned}$
$3.1 .2$   (a)	$$	1MA numerator and denominator   1CA simplification   AO   (2)	$\begin{array}{\|l\|} \hline \mathrm{P} \\ \mathrm{~L} 3 \end{array}$
$\begin{gathered} 3.1 .2 \\ \text { (b) } \end{gathered}$		1MA difference 1CA males total   1CA probability   OR   1A P(female)   1 M subtracting from 1   1CA P(male)	$\begin{aligned} & \hline \mathrm{P} \\ & \mathrm{~L} 3 \end{aligned}$
3.1.3	$\left.\begin{array}{rl} 2016 & =\frac{684100}{28529100} \times 100 \% \\ \checkmark \mathrm{MA} \end{array}\right] \begin{aligned} 2015 & =2,3979024 \approx 2,4 \% \\ \frac{673900}{28078700} \times 100 \% & \quad \checkmark \mathrm{CA} \\ & =2,4 \% \end{aligned}$	1MA numerator and denominator 1M multiply by $100 \%$ 1CA percentage   1MA numerator and denominator   1CA percentage OR	D   L4


Ques	Solution	Explanation	T\&L
	$\begin{array}{ll}  & \checkmark \mathrm{MA} \\ \text { 2014: } & 100 \%-(80,2 \%+8,9 \%+8,5 \%)=2,4 \% \\ & \checkmark \mathrm{MA} \\ \text { 2015: } & 100 \%-(80,4 \%+8,9 \%+8,3 \%)=2,4 \% \vee \mathrm{CA} \\ \text { 2016: } & 100 \%-80,6 \%-8,9 \%-8,1 \%=2,4 \% \end{array}$	1MA subtracting from 100\%   1 M adding other values 1CA percentage 1MA another year 1CA another year	
3.2.1	Total distance of a space and a post $\begin{array}{lr\|r} =100 \mathrm{~mm}+40 \mathrm{~mm} & \text { or } 0,1 \mathrm{~m}+0,04 \mathrm{~m} \\ = & 140 \mathrm{~mm} & \checkmark \mathrm{~A} \end{array} \quad \begin{gathered} =0,14 \mathrm{~m} \end{gathered}$   Distance between posts that must have a space and a post $\begin{aligned} & \begin{array}{l} \begin{array}{l} =3460 \mathrm{~mm}-100 \mathrm{~mm} \\ =3360 \mathrm{~mm} \\ \checkmark \mathrm{M} \end{array} \\ \text { Number of small posts }=\frac{3360}{140} \quad \checkmark \mathrm{M} \\ =24 \\ \checkmark \mathrm{CA} \end{array} \\ & \begin{array}{l} \text { or } 3,460 \mathrm{~m}-0,14 \mathrm{~m} \\ =3,360 \mathrm{~m} \end{array} \\ & \text { or } \frac{3,360}{0,140} \\ & =24 \mathrm{~m} \end{aligned}$	1A correct distance   1 M subtracting   1 M dividing by 140   1CA number of small post [Accept 26 full marks]	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~L} 2 \end{aligned}$
3.2.2	Direct sunlight coming into the rooms through the windows for much longer.   OR   Sun spend most of the time on the north side of the house.   OR   It is the side on which the sun shines most of the time during the day.	2J sun and time   OR   2J direction and time   OR   2 J sunshine	$\begin{aligned} & \text { MP } \\ & \text { L4 } \end{aligned}$
3.2.3	Open outward because they have short width $\checkmark \checkmark$ O   OR   $\checkmark \checkmark$ O   Designed to store things, as such they will obstruct inward opening of the doors. $\checkmark \checkmark \mathrm{O}$   Storage space will be lost if doors open inwards   OR   Other rooms open ${ }^{\checkmark}$ Onward because ${ }^{\checkmark}$ it is the entrance to the room.	2 O wideness   OR   2 O purpose   OR   20 space   OR   10 way of opening   10 purpose	$\begin{aligned} & \text { MP } \\ & \text { L4 } \end{aligned}$


Ques	Solution	Explanation	T\&L
3.2.4	$\text { Carpeted floor }=\text { Area of a Passage }+ \text { Dining }+ \text { Living }$ rooms $\begin{aligned} \mathrm{DR} \text { area } & =3,3274 \times 3,6576 \quad \checkmark \mathrm{SF} \\ & =12,17029824 \mathrm{~m}^{2} \quad \checkmark \mathrm{CA} \end{aligned}$   LR area $=4,5720 \times 4,2672$ $=19,5096384 \mathrm{~m}^{2}$   $\checkmark$ CA   $\checkmark \mathrm{M}$ $\begin{aligned} \text { Area of passage } & =15 \% \text { of }(12,17+19,51) \mathrm{m}^{2} \\ & =15 \% \text { of } 31,68 \mathrm{~m}^{2} \\ & =4,751990496 \mathrm{~m}^{2} \quad \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Total area } & =12,17 \mathrm{~m}^{2}+19,51 \mathrm{~m}^{2}+4,75 \mathrm{~m}^{2} \quad \checkmark \mathrm{M} \\ & =36,43 \mathrm{~m}^{2} \checkmark \mathrm{CA} \\ & \approx 37 \mathrm{~m}^{2} \checkmark \mathrm{R} \end{aligned}$	1SF finding area 1CA area of DR   1CA area of LR   1 M finding $15 \%$   1CA area of passage   1 M adding 3 or 4 values 1CA total area 1 R rounding [Max 6 marks if total area is calculated]	$\begin{aligned} & \hline \text { M } \\ & \text { L3 } \end{aligned}$
3.2.5	$\begin{aligned} & \text { Labour Cost: R1 } 600+37 \times \mathrm{R} 70 \\ & =\mathrm{R} 1600+\mathrm{R} 2590 \\ & =\mathrm{R} 4190 \quad \checkmark \mathrm{CA} \\ & \begin{array}{c} \text { Number of boxes }=37 \div 2,15 \quad \checkmark \mathrm{M} \\ =17,209 \\ \approx 18 \end{array} \end{aligned}$   Cost for boxes flooring: $\begin{aligned} & 18 \times \mathrm{R} 299,90 \\ &= \mathrm{R} 5398,20 \\ & \hline \mathrm{CA} \end{aligned}$   Number of underlay rolls: $37 \div 10$ $\begin{aligned} & =3,7 \\ & \approx 4 \end{aligned}$   Underlayer: $\quad 4 \times \mathrm{R} 56,90$ $=\mathrm{R} 227,60 \quad \checkmark \mathrm{CA}$ $\begin{aligned} \text { Total cost } & =\mathrm{R} 4190+\mathrm{R} 5 \\ & 398,20+\mathrm{R} 227,60 \\ & =\mathrm{R} 9815,80 \quad \checkmark \mathrm{CA} \end{aligned}$   The budget is sufficient. $\quad \checkmark \mathrm{O}$	Area CA from 3.2.4 above 1MA finding labour   1CA labour cost   1 M dividing by 2,15   1CA cost of boxes   1CA underlayer cost   1MCA adding all 3 different cost types 1CA total cost   10 conclusion	$\begin{aligned} & \text { F } \\ & \text { L4 } \end{aligned}$
		[38]	

## QUESTION 4 [36 marks]

Ques	Solution	Explanation	T\&L
4.1.1		1RT bracket3   1RT bracket 4   1RT bracket 5   OR   1RT tax bracket   1RT tax bracket   1RT tax bracket	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 2 \end{aligned}$
4.1.2	Pay extra $\operatorname{tax}(2 \%$ on taxable income) $\checkmark \checkmark \mathrm{O}$   OR $\checkmark \checkmark 0$   The levy is an extra (additional, more) tax on their income.   OR   Higher income earners are subjected to an extra tax in addition to usual income tax paid.	2 O reason   OR   2 O reason   OR   2 O reason (2)	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~L} 4 \end{aligned}$


Ques	Solution	Explanation	T\&L
4.1.3	Tax due 2016:   Tax due 2017: $\begin{aligned} & \quad \checkmark \mathrm{RT} \quad \checkmark \mathrm{SF} \\ & =\$ 54232+45 \% \times(\$ 311001-\$ 180000) \\ & =\$ 54232+45 \% \times \$ 131001 \\ & =\$ 54232+\$ 58950,45 \\ & =\$ 113182,45 \quad \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Medical levy } & =2 \% \times \$ 311001 \\ & =\$ 6220,02 \end{aligned}$   Total for 2017: $\$ 113182,45+\$ 6220,02 \quad \checkmark \mathrm{CA}$ $=\$ 119402,47$   Tax due difference: $\$ 119$ 402,47-\$109 519,54 $=\$ 9882,93 . \checkmark \mathrm{CA}$   The statement is VALID. $\checkmark \mathrm{O}$	1RT tax bracket   1 SF correct substitution   1CA tax due   1MA levy value   1CA total due   1RT tax bracket   1 SF correct values   1CA tax due   1CA total   1 M finding difference   1CA simplification   10 conclusion	$\begin{aligned} & \hline \text { F } \\ & \text { L3/4 } \end{aligned}$
4.2.1	Mary Rose restaurant; Denmark hotel; Civic Centre	3 A venues   Accept hotel	$\begin{aligned} & \text { MP } \\ & \text { L2 } \end{aligned}$


Ques	Solution	Explanation	T\&L
4.2.2	Because it runs over the river.   OR   Portions of the river not visible from above where the highway crosses or passes over the river.	2 O reason   OR   2 O reason   (2)	$\begin{aligned} & \hline \text { MP } \\ & \text { L4 } \end{aligned}$
4.2.3	$\checkmark \checkmark \mathrm{RT}$ $\checkmark \checkmark \mathrm{RT}$ $\checkmark \checkmark \mathrm{RT}$    North west OR NW OR     West of North	2RT direction (2)	$\begin{aligned} & \hline \text { MP } \\ & \text { L2 } \end{aligned}$
4.2.4	Turn right walk along Walker Str $\checkmark$ A   Turn right into Strickland Str $\checkmark$ A   Pass South Coast Highway   And turn left into Mount Shadforth Rd $\checkmark$ A   Restaurant will be on his right   OR   Turn SW into Walker Street and proceed.   At the corner turn NW and continue.   Cross South Coast Highway   Turn W into Mount Shadforth Rd.   The restaurant is on the northern side of the road.	1A route and turn 1 A route and turn   1A turn and road   OR   1A route and turn 1A route and turn   1A turn and road	$\begin{aligned} & \hline \text { MP } \\ & \text { L3 } \end{aligned}$
4.2.5	Measured distance between $=23 \mathrm{~mm}$   Scale 23 mm is 100 m   $\checkmark$ C   How long it will take him $=$ Time $=\frac{\text { Distance }}{\text { Speed }} \checkmark \mathrm{F}$   $=\frac{100 \mathrm{~m}}{1,1 \mathrm{~m} / \mathrm{s}} \quad \checkmark \mathrm{A}$   $=90,91$ seconds $\checkmark \mathrm{CA}$   $\checkmark \mathrm{C} \quad \checkmark \mathrm{CA}$   In minutes $90,909 \div 60=1,52$ minutes.   No. He can walk in less than 2 minutes at that speed. $$	2MA measuring   1C using scale   1F formula   1A dividing by speed   1CA calculating time 1C divide by 60 1CA minutes   10 conclusion   OR   1C multiply by 60   1A time in seconds   1A multiply with speed 1F formula 1CA distance 2MA measurement 1C using scale 10 conclusion	$\begin{aligned} & \hline \text { MP } \\ & \text { L4 } \end{aligned}$
		[36]	

