basic education

Department: Basic Education REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICAL LITERACY P2
FEBRUARY/MARCH 2018
MARKING GUIDELINES

MARKS: 150

SYMBOL	EXPLANATION
M	Method
MA	Method with accuracy
CA	Consistent accuracy
RCA	Rounding consistent accuracy
A	Accuracy
C	Conversion
S	Simplification
RT/RG	Reading from a table/graph/diagram
SF	Correct substitution in a formula
O	Opinion/Example/Definition/Explanation/Justification/Verification
P	Penalty, e.g. for no units, incorrect rounding off, etc.
R	Rounding off
NPR	No penalty rounding or omitting units
AO	Answer only, full marks

These marking guidelines consist of 19 pages.

QUESTION 1 [37 MARKS]			
Ques	Solution	Explanation	T/L
1.1.1	Number of days $=10 \quad \checkmark \mathrm{~A}$ Number of hours per day $=10 \quad \checkmark \mathrm{~A}$ Total hours $=10 \times 10=100 \checkmark \mathrm{CA}$	1A 10 days 1A 10 hours 1CA 100 hours AO (3)	$\begin{aligned} & \hline \text { M } \\ & \text { L2 } \end{aligned}$
1.1.2	VAT on teens ticket $\begin{aligned} & \checkmark \mathrm{RT} \\ = & \mathrm{R} 50 \times \frac{14}{114} \checkmark \mathrm{MA} \\ = & \mathrm{R} 6,14035 \\ \approx & \mathrm{R} 6,14 \quad \checkmark \mathrm{RCA} \end{aligned}$ $\begin{aligned} \text { Price without } \mathrm{VAT} & =\frac{\mathrm{R} 50}{114 \%} \text { or } \frac{\mathrm{R} 50}{1,14} \\ & \approx \mathrm{R} 43,86 \end{aligned}$ $\begin{aligned} \mathrm{VAT} & =\mathrm{R} 50-\mathrm{R} 43,86 \\ & =\mathrm{R} 6,14 \quad \quad \checkmark \mathrm{RCA} \end{aligned}$	1RT using correct value 1MA for multiplying by $\frac{14}{114}$ 1RCA VAT rounded to nearest cent OR 1RT using correct value 1MA for dividing by 114% $(1,14)$ 1RCA VAT rounded to nearest cent	$\begin{aligned} & \hline \text { F } \\ & \mathrm{L} 2 \end{aligned}$
1.1.3	$\begin{aligned} \mathrm{P}(\text { (riday }) & =\frac{2}{10} \quad \checkmark \mathrm{~A} \\ & =\frac{1}{5} \text { or } 20 \% \text { or } 0,2 \quad \checkmark \mathrm{CA} \end{aligned}$	1A numerator 1CA denominator (Q 1.1.1) 1CA simplification AO	$\begin{aligned} & \hline \mathrm{P} \\ & \mathrm{~L} 2 \end{aligned}$

Ques	Solution	Explanation	T/L
1.1.4	For 23 April: $\begin{aligned} \text { Total ticket cost } & =2 \times \stackrel{\checkmark \mathrm{RT} 150}{ } \quad \begin{array}{r} \text { R } 50+\mathrm{R} 50+\mathrm{M} 20 \end{array} \\ & =\mathrm{R} 420 \checkmark \mathrm{CA} \end{aligned}$ For 20 April: $\begin{aligned} \text { Total ticket cost } & =2 \times \mathrm{R} 75+\mathrm{R} 25+\mathrm{R} 50+\mathrm{R} 20 \\ & =\mathrm{R} 245 \checkmark \mathrm{CA} \end{aligned}$ Amount saved in rand $=$ R420 - R245 $=$ R175 Percentage savings $=\frac{175}{420} \times 100 \% \quad \mathrm{M}$ $=41,66 \ldots \%^{\checkmark} \mathrm{CA}$ Mrs Abrahams statement is VALID $\quad \checkmark \mathrm{O}$ OR For 23 April: $\begin{aligned} \text { Total ticket cost } & =2 \times \stackrel{\checkmark \mathrm{RT}}{\mathrm{R} 150+\mathrm{R} 50}+\stackrel{\mathrm{R} 50}{\checkmark \mathrm{M}}+\mathrm{R} 20 \\ & =\mathrm{R} 420 \checkmark \mathrm{CA} \end{aligned}$ For 20 April: $\begin{aligned} \text { Total ticket cost } & =2 \times \mathrm{R} 75+\mathrm{R} 25+\mathrm{R} 50+\mathrm{R} 20 \\ & =\mathrm{R} 245 \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Percentage of original } & =\frac{245}{420} \times 100 \% \quad \checkmark \mathrm{M} \\ & =58,333 \ldots \% \checkmark \mathrm{CA} \end{aligned}$ Percentage savings $=100 \%-58,333 \ldots \%$ $=41,66 \ldots \% \quad \checkmark \mathrm{CA}$ Mrs Abrahams statement is VALID $\checkmark \mathrm{O}$	1RT all correct values 1 M adding values 1CA total cost 1A calculating adult and pensioner ticket price 1CA total cost 1CA amount saved 1 M multiplying by 100% 1CA percentage 10 verification OR 1RT all correct values 1 M adding values 1CA total cost 1A calculating adult and pensioner ticket price 1CA total cost 1 M multiplying by 100% 1CA simplification 1CA percentage 10 verification NPR	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 4 \end{aligned}$
1.2.1	Eastern Cape or EC $\quad \checkmark \checkmark$ RT	2RT correct province	$\begin{array}{\|l} \hline \text { Data } \\ \text { L2 } \end{array}$

Ques	Solution	Explanation	T/L
1.2.2	Supporting the needy /poor / sick / elderly / orphaned $\checkmark \checkmark$ O OR Supporting the physically / mentally challenged OR Any other suitable reason to explain why grants are given.	2 O reason	$\begin{aligned} & \text { Data } \\ & \text { L4 } \end{aligned}$
1.2.3	\checkmark O No or The data cannot be represented by a single pie chart Two categories / types / topics of data $\quad \checkmark \checkmark \mathrm{O}$ OR There are too many sectors (18) to be accurately/ easily represented using a single pie chart. $\quad \checkmark \checkmark \mathrm{O}$ OR $\checkmark \mathrm{O}$ Not easy to compare if it is a single pie chart.	10 opinion 2 O reason	$\begin{aligned} & \text { Data } \\ & \text { L4 } \end{aligned}$
1.2.4	$\begin{aligned} & \text { Total number of citizens receiving social grants }= \\ & 2756621+2405846+3921846+463599+1 \\ & +987337+1429411+1506147+2474055 \\ & =17149931 \checkmark \mathrm{M} \\ & =17 \mathrm{CA} \end{aligned}$ Limpopo percentage $\begin{aligned} & \checkmark \mathrm{CA} \\ & =\frac{2405846}{17149931} \times 100 \% \quad \checkmark \mathrm{M} \\ & \approx 14,028313 \% \quad \checkmark \mathrm{CA} \end{aligned}$ OR also accept $\begin{aligned} \text { Total number in Limpopo } & =2405846+1324000 \\ & =3729846 \quad \checkmark \mathrm{CA} \end{aligned}$ Limpopo percentage $\begin{aligned} & =\frac{2405846^{\checkmark} \mathrm{CA}}{3729846} \times 100 \\ & =64,50 \% \quad \checkmark \mathrm{M} \end{aligned}$	1 M adding 1RT for all correct values 1CA for number of people 1CA for dividing in correct order 1M calculating \% 1CA simplification OR 1 M adding 1 RT for all correct values 1CA for number of people 1CA for dividing in correct order 1M calculating \% 1CA simplification NPR	$\begin{aligned} & \text { Data } \\ & \text { L3 } \end{aligned}$

Ques	Solution	Explanation	Topic/L
1.2.5			$\begin{aligned} & \text { Data } \\ & \text { L4 } \end{aligned}$
	$\begin{aligned} & \text { Gauteng } \\ & \text { Employed citizens : social grants recipients } \\ & 4942000: 2474055 \checkmark \mathrm{RT} \quad \checkmark \mathrm{M} \\ & 1 \end{aligned} \begin{aligned} & : 0,5006 \checkmark \mathrm{CA} \end{aligned}$	1 M writing as a ratio 1RT ratio with correct values 1CA Unit ratio	
	$\begin{aligned} & \text { Western Cape } \\ & \begin{aligned} 2266000: 1506147 & \checkmark \mathrm{RT} \\ 1: 0,664672 & \checkmark \mathrm{CA} \end{aligned} \end{aligned}$	1RT ratio with correct values 1CA Simplification	
	Gauteng \checkmark O	10 conclusion	
	OR	OR	
	$\begin{array}{\|l} \text { Gauteng } \\ \text { Employed citizens : social grants recipients } \\ 4942000: 2474055 \quad \mathrm{RT} \\ 1,99753: 1 \quad \checkmark \mathrm{CA} \end{array}$	1 M writing as ratio 1RT ratio with correct values 1CA Unit ratio	
	$\begin{aligned} & \text { Western Cape } \\ & \checkmark \text { RT } \\ & 2266000: 1506147 \checkmark \mathrm{CA} \\ & 1,5045: 1 \end{aligned}$	1RT ratio with correct values 1CA simplification	
	Gauteng $\checkmark \mathrm{O}$	10 conclusion (6)	
		[37]	

QUESTION 2 [40 MARKS]			
Ques	Solution	Explanation	T/L
2.1.1	32 OR $31 \quad \checkmark \checkmark$ A	2 A correct number of days	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~L} 2 \end{aligned}$
2.1.2	$\begin{aligned} & \text { Total credit } \\ & =-\mathrm{R} 37,81+(-\mathrm{R} 200,00)+(-\mathrm{R} 0,01)^{\checkmark \mathrm{MA}} \\ & =-\mathrm{R} 237,82 \quad \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} & \text { Total debit } \\ & =\text { R200,00 + R4,00 + R31 716,69 + R10 770,00 } \\ & =\text { R42 690,69 } \checkmark \text { CA } \end{aligned}$ $\begin{aligned} \text { Closing balance } & =\text { R42 690,69 }+(- \text { R237,82 }) \\ & =\text { R42 452,87 } \end{aligned}$ OR $\checkmark \mathrm{MA}$ $\mathrm{R} 37,81+\mathrm{R} 200+\mathrm{R} 0,01=\mathrm{R} 237,82 \text { credit } \quad \checkmark \mathrm{CA}$ $\begin{aligned} & \text { Total debit } \\ & =\text { R200,00 }+ \text { R4,00 }+ \text { R31 716,69 }+ \text { R10 770,00 } \\ & =\text { R42 690,69 } \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Closing balance } & =\text { R42 690,69 - R237,82 } \\ & =\text { R42 452,87 } \end{aligned}$	1MA adding credits 1CA simplification 1MA adding debits 1CA simplification 1MA adding credits to debits OR 1MA adding credits 1CA simplification 1MA adding debits 1CA simplification 1MA adding credits to debits [Using the Account Summary: Closing Balance $\begin{aligned} & =42690,69-200,01-37,81 \\ & =42452,87 \max 4 \text { marks }] \end{aligned}$	$\begin{aligned} & \hline \text { F } \\ & \text { L3 } \end{aligned}$
2.1.3	$\checkmark \checkmark \mathrm{O}$ Safety reasons OR prevent Fraud / Confidentially/ Account number private to Mr Son only	2 O Explanation (2)	$\begin{array}{\|l\|} \hline \text { F } \\ \text { L4 } \end{array}$
2.1.4	Insurance premium $\begin{aligned} & =\mathrm{R} 42452,87 \div \mathrm{R} 1000 \quad \checkmark \mathrm{M} \\ & =42,45287 \quad \checkmark \mathrm{CA} \\ & \approx 43 \quad \checkmark \mathrm{R} \end{aligned}$ $\begin{aligned} & \text { Insurance cost } \\ & =43 \times \mathrm{R} 3,50 \checkmark \mathrm{MA} \\ & =\mathrm{R} 150,50 \quad \checkmark \mathrm{CA} \end{aligned}$	1 M dividing by 1000 1CA simplification 1 R rounding up 1MA multiplying correct values 1CA correct premium [not rounding up max 3 marks]	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 3 \end{aligned}$

Ques	Solution	Explanation		T/L
2.1.5	The bank owes Mr Son R 37,81 $\quad \checkmark \checkmark \mathrm{O}$ OR The account has a credit balance $\quad \checkmark \checkmark$ O OR Over-payment from previous months. $\checkmark \checkmark \mathrm{O}$	2 O reason	(2)	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~L} 4 \end{aligned}$
2.1.6	Does not have large amounts of cash to purchase expensive goods $\checkmark \checkmark \mathrm{O}$ OR Easier / convenient to settle expensive items with smaller monthly payments OR Loyalty points OR $\quad \checkmark \checkmark$ O Safety $\quad \checkmark \checkmark$ O OR Did not have money when he saw something he likes. OR To be able to see on what he spent his money. ${ }^{\checkmark} \mathrm{O}$ OR Credit card could be used in times of crisis. $\quad \checkmark \checkmark \mathrm{O}$ OR Some people use credit merely because it is easily accessible (available) OR To build a good credit record. $\quad \checkmark \checkmark$ O OR He is using the interest free period. $\quad \checkmark \checkmark \mathrm{O}$	2 O reason	(2)	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 4 \end{aligned}$

Ques	Solution	Explanation	T/L
2.2	$\begin{aligned} & \text { Distance }=\text { average speed } \times \text { time } \\ & \checkmark \mathrm{SF} \\ & 34 \mathrm{~km}=85 \mathrm{~km} \text { per hour } \times \text { time } \\ & \text { Time }=0,4 \text { hours } \checkmark \mathrm{A} \\ & \quad=24 \text { minutes } \checkmark \mathrm{C} \end{aligned}$ Mr Son left home at 24 minutes before 12:10 $=11: 46 \quad \checkmark \mathrm{CA}$ He did NOT leave at 11:40 $\checkmark \mathrm{O}$ OR Time diff. $=12: 10-11: 40=30 \mathrm{~min}=0,5$ hours $\quad \checkmark \mathrm{A}$ $\checkmark \mathrm{SF} \quad \checkmark \mathrm{CA}$ Distance $=85 \mathrm{~km} / \mathrm{h} \times 0,5 \mathrm{~h}=42,5 \mathrm{~km}$ more than $34 \mathrm{~km} \checkmark \mathrm{O}$ Mr Son did NOT leave at 11:40 but a bit later $\checkmark \mathrm{O}$	1SF substitution of both values 1A time in hours 1C time in minutes 1CA simplification 10 conclusion OR 1A time in hours 1SF substitution 1CA distance 10 comparing 10 conclusion	$\begin{aligned} & \hline \mathrm{M} \\ & \mathrm{~L} 4 \end{aligned}$
2.3.1	No data was available for Japan OR Japan did not provide data $\quad \checkmark \checkmark$ O OR The books were not published in time $\quad \checkmark \checkmark$ O	2 O no data available	$\begin{aligned} & \text { Data } \\ & \text { L4 } \end{aligned}$
2.3.2	$\begin{aligned} & \text { Range }=\text { maximum }- \text { minimum } \checkmark \mathrm{M} \\ & \begin{aligned} 463223 & =\text { maximum }-4612 \checkmark \mathrm{~A} \\ \text { Maximum } & =463223+4612 \\ & =467835 \checkmark \mathrm{~A} \end{aligned} \end{aligned}$	1M range concept 1A identifying minimum 1A calculating the maximum	$\begin{aligned} & \text { Data } \\ & \text { L2 } \end{aligned}$
2.3.3	$\begin{aligned} & 4 \text { 612; 6 373; } 8870 ; 24177 ; 43146 ; 47352 ; \\ & 64 \text { 117; 76 434; 77 910; } 93600 ; 95483 ; 184000 ; \\ & 304 \text { 912; } 444000 ; 467835 \quad \checkmark \mathrm{CA} \\ & \text { Median }=76434 \quad \checkmark \checkmark \mathrm{CA} \end{aligned}$	CA from2.3.2 1MA all values in correct order 1CA maximum value 2CA median AO (4)	Data
2.3.4	no mode $\checkmark \checkmark$ A	2A no mode	$\begin{aligned} & \text { Data } \\ & \text { L2 } \end{aligned}$

Ques	Solution	Explanation	T/L
2.3.5	7 countries $\checkmark \checkmark \checkmark$ A	3 A correct number of countries [Listing ALL 7 without counting max 2 marks]	$\begin{aligned} & \hline \text { Data } \\ & \text { L2 } \end{aligned}$
2.3.6	$\begin{aligned} \mathrm{P} & =\frac{12}{15} \times 100 \% \\ & =80 \% \quad \checkmark \mathrm{CA} \end{aligned}$	1A numerator 1A denominator 1CA probability as a percentage	Prob. L2
		[40]	

Ques	Solution	Explanation	T/L
	$\begin{aligned} & 5 \text { litres of paint can cover } \\ & 5 \ell \times 1000 \\ & \checkmark \mathrm{C} \\ & =5000 \mathrm{~m} \ell \times 50 \checkmark \mathrm{M} \\ & =250000 \mathrm{~cm}^{2} \quad \checkmark \mathrm{CA} \\ & \text { Display } \\ & \checkmark \mathrm{C} \\ & 48 \times 25 \mathrm{~mm}=1200 \mathrm{~mm}=120 \mathrm{~cm} \\ & 36 \times 25 \mathrm{~mm}=900 \mathrm{~mm}=90 \mathrm{~cm} \\ & \text { Area }=120 \mathrm{~cm} \times 90 \mathrm{~cm} \quad \checkmark \mathrm{SF} \\ & \quad=10800 \mathrm{~cm}^{2} \quad \checkmark \mathrm{CA} \\ & \text { Spray paint is enough for }=\frac{250000}{10800} \checkmark \mathrm{M} \\ & \quad=23,148 \text { boards } \quad \checkmark \mathrm{CA} \\ & 5 \ell \text { is not enough } \quad \checkmark \mathrm{O} \end{aligned}$ OR Area of display $\begin{aligned} & =48 \text { inches } \times 36 \text { inches } \quad \checkmark \text { SF } \\ & =1728 \text { inches }^{2} \quad \checkmark \mathrm{CA} \\ & =1728 \times 625 \mathrm{~mm}^{2} \quad \checkmark \mathrm{C} \\ & =1080000 \mathrm{~mm}^{2} \\ & =1080000 \div 100 \mathrm{~cm}^{2} \\ & =10800 \mathrm{~cm}^{2} \quad \checkmark \mathrm{CA} \end{aligned}$ Total area of 25 displays $=10800 \mathrm{~cm}^{2} \times 25 \stackrel{\checkmark \mathrm{M}}{=} 270000 \mathrm{~cm}^{2} \checkmark \mathrm{CA}$ Amount of whiteboard paint needed $\begin{aligned} & =270000 \mathrm{~cm}^{2} \div 50 \mathrm{~cm}^{2} \\ & \quad \checkmark \mathrm{CA} \\ & =5400 \mathrm{~m} \mathrm{\ell} \div 1000 \\ & =5,4 \text { litres } \checkmark \mathrm{C} \\ & 5 \ell \text { is not enough. } \quad \checkmark \mathrm{O} \end{aligned}$	1 C converting to $\mathrm{m} \ell$ 1 M working with ratio 1CA calculating area that paint can cover 1 C converting inches to mm 1 C converting mm to cm 1 SF substituting correct values 1CA area of one display board 1 M dividing 1CA number of boards 10 conclusion OR 1SF substitution 1CA area in inches 1 C converting to mm^{2} 1CA area of one display board 1M multiplying by 25 1CA total area 1 M dividing by rate 1CA ml needs 1 C converting to litre 10 conclusion	

Ques	Solution	Explanation	T/L
3.3.1	Easily accessible to all stands $\checkmark \checkmark \mathrm{R}$ OR Would not waste any time looking for the stand. $\checkmark \checkmark \mathrm{R}$ OR Any other suitable reason	2 R reason (2)	$\begin{aligned} & \text { Maps } \\ & \text { L4 } \end{aligned}$
3.3.2	Maximum number of HEI from the USA $\begin{aligned} & =6 \times 6 \checkmark \mathrm{M} \checkmark \mathrm{~A} \\ & =36 \checkmark \mathrm{CA} \end{aligned}$	1 M multiplying by 6 1A correct USA's stands 1CA simplification AO	$\begin{aligned} & \hline \text { Maps } \\ & \text { L2 } \end{aligned}$
3.3.3		1A numerator 1A denominator 1CA simplification OR 1A numerator 1A denominator 1CA simplification OR 1 M subtracting from whole 1A numerator 1CA simplification	$\begin{aligned} & \mathrm{P} \\ & \mathrm{~L} 2 \end{aligned}$
3.3.4	Delivery entrance $3 \checkmark \checkmark$ A $\text { L01 } \checkmark \checkmark \mathrm{A}$	2A Delivery entrance 2A stand	$\begin{aligned} & \text { Maps } \\ & \text { L3 } \end{aligned}$
3.3.5	L $42 \checkmark \checkmark \mathrm{~A}$	2A stand number (2)	$\begin{align*} & \text { Maps } \tag{4}\\ & \text { L2 } \end{align*}$

QUESTION 4 [37 MARKS]			
Ques	Solution	Explanation	T/L
4.1.1 (a)	$\begin{aligned} \text { R105 } & =\text { cost of T-shirt }+ \text { cost of Shorts + printing } \\ & \checkmark \mathrm{A} \quad \checkmark \mathrm{~A} \\ & =\text { R } 50,00+\mathrm{R} 35,00+2 \times \mathrm{R} 10 \\ & \\ \text { OR } & =(\text { R } 50+\mathrm{R} 10)+(\mathrm{R} 35+\mathrm{R} 10) \\ & =\text { R60 } 45 \mathrm{R} 45 \quad \checkmark \checkmark \checkmark \mathrm{~A} \end{aligned}$	1A cost of T-shirt 1A cost of short 1A printing	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 2 \end{aligned}$
4.1.1 (b)	$\begin{aligned} \text { Total cost } & =\text { R10 } 000+\mathrm{R} 105 \times 500^{\checkmark \mathrm{SF}} \\ & =\mathrm{R} 62500 \quad \checkmark \mathrm{~A} \end{aligned}$	1SF substitution 1A simplification AO [Using the selling price 0 marks]	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~L} 2 \end{aligned}$
4.1.2		1 A writing value in full 1M dividing 1 CA value of A 1 M multiplying by 125 1 A dividing by 1000 1 CA value of B OR 1RT values from table 1 M using ratio 1CA value of A 1RT values from table 1 M using ratio $1 C A$ value of B OR 3A value of A 3A value of B AO	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 2 \end{aligned}$

Ques	Solution	Explanation	Topic/L
4.1.4 (a)	Number of Sets $=500 \quad \checkmark \mathrm{CA}$ Income at break-even point $=$ R62 500 or R62,5 thousand $\checkmark \mathrm{CA}$	1CA number of sets 1CA income [Accept values between R62 000 to R63 000]	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 3 \end{aligned}$
4.1.4 (b)	$\begin{aligned} & \text { Number of sets }=800 \quad \checkmark \checkmark \checkmark \text { RT } \\ & \boldsymbol{x}=\text { number of sets } \\ & \text { Profit }=\text { Income }- \text { Expenses } \\ & \text { R6 } 000=125 \times \boldsymbol{x}-(10000+105 \times \boldsymbol{x}) \quad \checkmark \mathrm{M} \\ & \text { R6 } 000=20 \boldsymbol{x}-\mathrm{R} 10000 \\ & \boldsymbol{x}=800 \quad \checkmark \checkmark \mathrm{CA} \\ & \boldsymbol{x}=\text { number of sets } \\ & \text { Income }=125 \times \boldsymbol{x} \\ & \text { Expenses }=10000+105 \times \boldsymbol{x} \\ & \text { Profit }=20 \boldsymbol{x}-\mathrm{R} 10000 \checkmark \mathrm{M} \\ & 20 \boldsymbol{x}-\mathrm{R} 10000=\text { R6 } 000 \\ & \boldsymbol{x}=800 \checkmark \checkmark \mathrm{CA} \end{aligned}$	3RT number of sets from graph (CA from graph) OR 1 M using thousand rand 2CA number of sets OR 1 M using thousand rand 2CA number of sets	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 3 \end{aligned}$

Ques	Solution	Explanation	Topic/L
4.3.2	\checkmark A Electronics $51 \%-43 \%=8 \% \quad \checkmark \mathrm{M}$ \checkmark A Sports equipment $44 \%-36 \%=8 \%$	1A Electronics 1A Sports equipment 1M difference of 8%	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 2 \end{aligned}$
4.3.3	Groceries $\quad \checkmark \mathrm{A}$ Fresh produce like bread and milk is immediately available. $\checkmark \checkmark$ O OR $\checkmark \checkmark \mathrm{O}$ Wrong items will not be delivered to your home OR You can pay cash for your groceries $\checkmark \checkmark$ O OR You can taste or test some products before you buy them. $\quad \checkmark \checkmark \mathrm{O}$ OR Frozen goods may melt before they reach you. OR Better comparison can be made if you buy groceries in store. $\checkmark \checkmark O$ OR $\checkmark \mathrm{A}$ Clothing and footwear - it has to be tried to see whether it fits correctly. $\quad \checkmark \checkmark \mathrm{O}$ OR Jewellery - to fit the size of a ring. $\checkmark \checkmark$ O OR Electronic goods - it can be tested in the shop before buying. $\checkmark \checkmark \mathrm{O}$ OR Or any other items where instore graph is higher than the internet graph with a valid reason.	1A Item 20 opinion	$\begin{aligned} & \hline \text { F } \\ & \text { L4 } \end{aligned}$
		[37]	
		TOTAL: 150	

