

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICAL LITERACY P2

EXEMPLAR 2014

MEMORANDUM

MARKS: 150

Symbol	Explanation
М	Method
M/A	Method with accuracy
CA	Consistent accuracy
А	Accuracy
С	Conversion
S	Simplification
RT/RG	Reading from a table/Reading from a graph
SF	Correct substitution in a formula
0	Opinion/Example
Р	Penalty, e.g. for no units, incorrect rounding off, etc.
R	Rounding off

This memorandum consists of 11 pages.

Copyright reserved

Please turn over

QUES	TION 1 [40 MARKS]		
Ques	Solution	Explanation	
1.1.1	$\checkmark M/A$ Amount = R1 500 + R500 + R1 000 × 2 $\checkmark A$ = R4 000 $\checkmark CA$	1M/A adding values 1A 2 hours after 24:00 1CA amount (3)	L3
1.1.2 (a)	Remaining length = $\frac{2}{3} \times 23 \text{ m} \checkmark \text{A}$ = 15,33 m $\checkmark \text{CA}$ Area = length × breadth = 15,33 m × 18 m $\checkmark \text{SF}$ = 275,94 m ² $\checkmark \text{CA}$ Area per table = $\frac{275,94\text{m}^2}{30}$ OR $\begin{array}{c} \text{Area for tables} = 30 \times 9 \text{ m}^2 \\ = 270 \text{ m}^2 \end{array}$ = 9,198 m ² $\approx 9 \text{ m}^2 \checkmark \text{CA}$ This is less than the available area	1A using $\frac{2}{3}$ 1CA length 1SF substituting values 1CA area 1M dividing by 30 1CA area per table	L3 (4) L4 (3)
	\therefore Kgothso was correct. \checkmark CA	1CA verification (7)	
1.1.2 (b)	9 m ² = 3 m × 3 m ∴ areas are 3 m across $\checkmark A$ $\checkmark C$ Width needed for table and chairs = 1,8 m + 2 × 0,45 m = 2,7 m $\checkmark CA$ ∴ walking space = 3 m - 2,7 m $\checkmark M$ = 0,3 m $\checkmark CA$ = 30 cm OR Extra space on each side = 15 cm Space between tables = 15 cm × 2 = 30 cm	1A dimension 1C conversion 1CA width 1M subtracting 1CA walking space (5)	L2 (1) L4 (4)
1.1.3 (a)	R6 000 ✓√RG	2 RG Interpret fixed expense (2)	L2
1.1.3 (b)	Total fixed expense = tickets + table decorations + DJ $\checkmark A$ $\checkmark A$ $\checkmark A$ = 300 tickets × R2,20 + 30 tables × R128 + R1 500 = R660 + R3 840 + R1 500 = R6 000	1A tickets 1A table decorations 2A DJ (4)	L4

Ques	Solution	Explanation	
			L4
1.3	Profit if the hall is used = $R58500 - R51000$		
	$=$ R7 500 \checkmark CA	1CA profit using the hall	
	Income if venue ABC is used = $250 \times R195 \checkmark M$	1M multiplying with 250	
	$=$ R48 750 \checkmark CA	1CA income	
	Profit if venue ABC is used = R48 750 - R38 750 \checkmark M	1M subtracting	
	$=$ R10 000 \checkmark CA	1CA profit using ABC	
	Difference in profit = $R10\ 000 - R7\ 500$		
	$= R2 500 \checkmark \checkmark CA$	2CA difference	
		(7)	.
1.4	They will print and sell less tickets $\checkmark \checkmark O$	2 O valid reason	L4
	OR They would not be responsible to tidy up the venue		
	OR		
	Any other valid reason		
		(2)	
		[40]	

QUEST	ION 2 [37 MARKS]		
Ques	Solution	Explanation	
2.1.1	Total weight = 91 × 100kg = 9 100 kg \checkmark A 9 100kg = $\frac{9100}{0,45359}$ \checkmark M $\approx 20\ 062,17\ lb$ \checkmark CA 20 062,17 lb = $\frac{20\ 062,17\ \checkmark}{14}$ \checkmark CA $\approx 1\ 433,01\ stone$ No he is wrong, 9 100 kg is less than 1 450 stone \checkmark J CR \checkmark M 1 stone = 14 × 0,45359 kg = 6,35026 kg \checkmark CA \checkmark M 1450 × 6,35026 $\approx 9\ 207,88\ kg \checkmark$ CA No he is wrong, 1 450 stone is more than the 9 100 kg \checkmark J	1A total weight 1M dividing by 0,45359 1CA pounds 1M dividing by 14 1CA stone 1J conclusion	L4
		(6)	1.2
2.1.2 (a)	Surface area of a cylinder = $2 \times \pi \times \text{radius} \times \text{height} \checkmark \text{SF}$ = $2 \times 3,142 \times 13 \times 17 \qquad \checkmark \text{A}$ = $1 388,764 \text{ m}^2 \qquad \checkmark \text{CA}$ Area to be covered = $1 388,764 - 61 \times 2,25 \times 0,98$ = $1 388,764 - 134,505 \qquad \checkmark \text{CA}$ = $1 254,259 \text{ m}^2 \qquad \checkmark \text{CA}$	1SF substitution 1A radius 1CA surface area cylinder 1M subtracting 61 louvers 1C conversion 1CA area of the louvers 1CA area to be cladded	L3
2.1.2 (b)	Circumference of a cylinder = $2 \times \pi \times \text{radius}$ = $2 \times 3,142 \times 13$ $\checkmark \text{SF}$ = 81,692 m $\checkmark \text{CA}$	(7) 1SF substitution 1CA circumference	L2
	Number of sides = $\frac{81,692}{5,1}$ \checkmark M ≈ 16 \checkmark CA	1M dividing 1CA 16 sides (4)	
2.1.3 (a)	Southern view $\checkmark \checkmark A$ (accept south west or south east as well)	2A elevation (2)	L4
2.1.3 (b)	32 ft = 10 m 1 ft = $\frac{10}{32}$ = 0,3125 m \checkmark M 110 ft = 110 × 0,3125 = 34,375 m \checkmark CA \approx 34,38 m	1M using scale to find 1 ft 1CA height (2)	L2

5

Ques	Solution	Explanation	
2.2.1 & 2.2.4	R354 R354	Raroo National Park Beaufort West Prins Albert Calitzdorp Oudtshoorn	L2
	2.2.4 1A Showing R46 in North –westerly direction 1A Showing R46 in South – westerly direction		
	1A showing R43	(3)	L3
2.2.2	Total distance from Worcester to Laingsburg = $29 \text{ km} + 42 \text{ km} + 89 \text{ km} \checkmark M$ = $160 \text{ km} \checkmark CA$	1M adding the correct distances 1CA total distance	
	Distance on N1 to turn off = 125 km Distance from Laingsburg = 160 km - 125 km \checkmark M = 35 km \checkmark CA	1M subtracting 125 km 1CA distance (4)	
2.2.3	Total distance travelled		L3
	= $125 \text{ km} + 110 \text{ km} + 13,7 \text{ km} + 4,9 \text{ km}$ = $253,6 \text{ km} \checkmark \text{CA}$	1CA total distance	
	2 h 56 min = 2 + $\frac{56}{60}$ h = $\frac{44}{15}$ h = 2,9333 h \checkmark C	1C converting	
	Total distance = average speed × time 253,6 km = average speed × 2,9333 h \checkmark SF	1SF substituting	
	Average speed = $\frac{253,6 \text{ km}}{2,9333 \text{ h}}$ \checkmark S	1S change subject of formula 1CA speed	
	≈ 86,45 km/h ✓ CA	(5)	
		[37]	

	Solution							Explana	tion		
3.1.1	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				12 ded	L2					
3.1.2	R88 000 is 5 \therefore 4 years old 2013 - 4 = 20	der 🗸	A				1A	4 year dif 2009 SWER ONLY		(4) ARKS (2)	L3
8.1.3 a)							L2				
8.1.3 b)	The condition of the car (having dents and scratches price decrease)2J valid reasonThe kilometres on the dial (more kilometres price decrease)2J valid reasonOr any other valid reason(2)						L4				
3.1.4 a)	180 160 160 140 120 100 80 40 20 0 0 0	•	xterplot ✓A	of the provide the providence of the providence	price a	nd age o	of a	car	10		

Ques	Solution	Explanation	
3.1.4 (b)	$\checkmark \checkmark J$ The price of a car decreases as the age increase	2J correct trend (2)	L4
3.1.4 (c)	Since the values given in the table is decreasing every year but not at a fixed rate, it is possible for a 9 year old car to cost R50 000. $\checkmark \checkmark J$	2J reasoning	L4
3.2.1	49 ✓✓RG	(2) 2RG number of months (2)	L2
3.2.2	9 months $\checkmark \checkmark A$	2A number of months (2)	L4
3.2.3	\checkmark A The values are discrete because it is the number of vehicles sold and that must be a whole number. \checkmark A	1A discrete 1A whole number (2)	L4
3.2.4	$\checkmark \checkmark A$ $\checkmark \checkmark A$ 50% of the months Dealership L sold more than 34 vehicleswhile Dealership K only sold more than 30 vehicles permonth. OR $\checkmark \checkmark A$ The middle value of Dealership L is higher which means for6 of the twelve monts the sales exceeded 34 vehicles permonth.	2A meaning of median 2A explanation (4)	L4
3.2.5	 Dealership M has the highest number sold in one month namely 60 vehicles^A Dealership M lowest number sold 20 is whilst the other Dealerships have a lowest of 10 The lower and the upper quartile values and the median are all higher than For 3 months (the upper quartile) the sales were more then 49 vehicles per month. ✓ A 	2A mentioning maximum value 2A mentioning the minimum value 2A mentioning the quartile values 2A mentioning the upper quartile (8) [37]	L4

	TION 4 [36 MARKS]		n.
Ques	Solution	Explanation	
4.1	A case = $6 \times 4 = 24$ cans $\checkmark A$	1A number of cans	L3
	Price per can = $\frac{R137,50}{24}$ $\checkmark M$	1M dividing by 24	
	$= \frac{24}{R5,73} \checkmark CA$	1CA price	
	Profit per can = $R8,00 - R5,73$ $\checkmark M$ = $R2,27$ $\checkmark CA$	1M subtracting	
	Percentage added = $\frac{R2,27}{R5,73} \times 100\%$ $\checkmark M$	1M finding percentage	
	= 39,616% $\approx 39,62\%$ \checkmark CA	1CA percentage	
	OR	OR	
	$R5,73 \times percentage added = R8,00$		
	Percentage added = $\frac{R8,00}{R5,73} \times 100\%$ $\checkmark M$	1M finding percentage	
		1M subtracting 1CA percentage (7)	
4.2.1	Yes, most people would go for the cheaper version of the product $\checkmark \checkmark \circ \circ$	20 for the reason	L4
		(2)	
4.2.2	Number of cans sold per week = $6 \times 24 = 144$ $\checkmark A$	1A number of cans	L3
	Total profit made on cans = $144 \times R2,27$ = R326,88 \checkmark CA	1CA profit on cans	
	Profit per bottle = $R5,00 - R4,20$ = $R0,80$ $\checkmark A$	1A profit per bottle	
	Number of bottles to sell = $\frac{R326,88}{R0,80}$ $\checkmark M$	1M dividing	
	$= 408.6$ $\approx 409 \checkmark CA$	1CA number of bottles (5)	

Ques	Solution	Explanation	
4.2.3	Percentage increase of sales $= \frac{\text{Increased number sold per week}}{\text{Original number sold per week}} \times 100\%$ $= \frac{409 - 144}{144} \times 100\% \checkmark \text{M} \checkmark \text{SF}$ $\approx 184,03\% \checkmark \text{CA}$	1M subtracting 1SF substituting 1CA percentage (3)	L2
4.2.4	The number of cooldrinks increase from 144 per week to 409 per week. \therefore the percentage increase is 184% $\checkmark O$ This means it is nearly 3 times more than what she sold before. The decrease in the price is from R8,00 to R5,00. A person knowing the price is R8,00 would not have enough money to buy a second bottle, but persons coming with R10 might buy 2 bottles. This will only double her sales. $\checkmark O$ The increase is just too much.	10 recognising how much more she needs to sell 10 reasoning about the decreased price and its effects 10 conclusion (3)	L4
4.3.1	P(vetkoek) = $\frac{6}{18} = \frac{1}{\sqrt{A}}$ Predicted number = $\frac{1}{3} \times 12$ $\checkmark M$ = 4 $\checkmark CA$	1A number of events 1A number of outcomes 1M multiplying probability with 12 1CA predicted number (4)	L3
4.3.2	P(sweets or cooldrink) = $\frac{9}{18} \checkmark A$ = $\frac{1}{2} \checkmark CA$	1A number of events 1A number of outcomes 1CA simplification (3)	L3

Ques	Solution	Explanation	
			L3
4.3.3	5 144 [•] A	1A probability of cool	
	$\frac{1}{18} = \frac{1}{18}$ number of customers	drink	
		1A ratio with number	
	\therefore 5× number of customers = 18 × 144	of cool drinks	
		1S changing the subject	
	Number of customers = $\frac{2592}{5}$ \checkmark S		
	= 518,4	1CA number of	
	$\approx 518 \text{ or } 519 $ √CA	customers	
	~ 518 01 519 VCA		
	OR	OR	
	Ratio choosing cooldrink to number of customers is $5:18 \checkmark A$	1A ratio	
		1A unit ratio	
	$\therefore 1: \frac{18}{5} \checkmark A$		
	5	1M multiplying	
	Then $144 : \frac{18}{5} \times 144$ $\checkmark M$		
		1CA number of	
	$144:518 \text{ or } 144:519 \checkmark CA$	customers	
		(4)	
			L4
4.4	Layout A: Fridge and table near to the door leading to her house		
	Layout B: Fridge and table near the window through which she	2A comparing the	
	sells. $\checkmark \checkmark A$	layouts	
	$\checkmark 0$	10 choosing B	
	She should use Layout B. When serving customers the Fridge		
	and table is closer to the window and she will not have to walk	10 mentioning	
	so far to fetch vetkoek and cool drinks.	something about the	
	Vetkoek and cool drinks are the two items which is more likely	distance	
	to be bought by her customers $\frac{11}{18} \approx 0.6$ or 60% choose those	10 mentioning the two	
	18 18 18 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000	products more likely to	
	two.	be chosen	
		(5)	
		[36]	
		Total :150	