basic education

Department:
Basic Education REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICAL LITERACY P2

EXEMPLAR 2014
MEMORANDUM

MARKS: 150

Symbol	Explanation
M	Method
M/A	Method with accuracy
CA	Consistent accuracy
A	Accuracy
C	Conversion
S	Simplification
RT/RG	Reading from a table/Reading from a graph
SF	Correct substitution in a formula
O	Opinion/Example
P	Penalty, e.g. for no units, incorrect rounding off, etc.
R	Rounding off

This memorandum consists of $\mathbf{1 1}$ pages.

QUESTION 1 [40 MARKS]			
Ques	Solution	Explanation	
1.1.1	$$	1M/A adding values 1A 2 hours after 24:00 1CA amount	L3
$\begin{aligned} & 1.1 .2 \\ & \text { (a) } \end{aligned}$	$\begin{array}{rlr} \text { Remaining length } & =\frac{2}{3} \times 23 \mathrm{~m} & \checkmark \mathrm{~A} \\ & =15,33 \mathrm{~m} & \checkmark \mathrm{CA} \end{array} \text { Area }=\text { length } \times \text { breadth } \quad \checkmark \mathrm{SF} \text {. }$ $\begin{aligned} & \begin{aligned} & \checkmark \mathrm{M} \\ & \text { Area per table }=\frac{275,94 \mathrm{~m}^{2}}{30} \\ &=9,198 \mathrm{~m}^{2} \\ & \approx 9 \mathrm{~m}^{2} \checkmark \mathrm{CA} \end{aligned} \end{aligned}$ Area for tables $=30 \times 9 \mathrm{~m}^{2}$ OR $=270 \mathrm{~m}^{2}$ This is less than the available area \therefore Kgothso was correct. ${ }^{\checkmark}$ CA	1A using $\frac{2}{3}$ 1CA length 1SF substituting values 1CA area 1 M dividing by 30 1CA area per table	$\begin{aligned} & \text { L3 (4) } \\ & \text { L4 (3) } \end{aligned}$
1.1.2 (b)	$\begin{aligned} & 9 \mathrm{~m}^{2}=3 \mathrm{~m} \times 3 \mathrm{~m} \\ & \begin{array}{l} \therefore \text { areas are } 3 \mathrm{~m} \text { across } \quad \checkmark \mathrm{A} \\ \text { Width needed for table and chairs }=1,8 \mathrm{~m}+2 \times 0,45 \mathrm{~m} \\ \\ =2,7 \mathrm{~m} \\ \therefore \text { walking space } \end{array} \quad 3 \mathrm{~m}-2,7 \mathrm{~m} \quad \checkmark \mathrm{M} \\ & \quad=0,3 \mathrm{~m} \quad \checkmark \mathrm{CA} \\ & \quad=30 \mathrm{~cm} \end{aligned} \quad \begin{array}{r} \text { OR } \\ \begin{array}{r} \text { Extra space on each side }=15 \mathrm{~cm} \\ \text { Space between tables }=15 \mathrm{~cm} \times 2 \quad \checkmark \mathrm{CA} \\ =30 \mathrm{~cm} \end{array} \end{array}$	1A dimension 1C conversion 1CA width 1M subtracting 1CA walking space	$\begin{aligned} & \hline \text { L2 (1) } \\ & \text { L4 (4) } \end{aligned}$
$\begin{aligned} & 1.1 .3 \\ & \text { (a) } \end{aligned}$	R6 $000 \checkmark \checkmark$ RG	2 RG Interpret fixed expense	L2
$\begin{aligned} & 1.1 .3 \\ & \text { (b) } \end{aligned}$	$\begin{aligned} & \text { Total fixed expense } \\ & =\text { tickets + table decorations + DJ } \\ & \quad \checkmark \mathrm{A} \\ & =300 \text { tickets } \times \text { R2,20 + 30 tables } \times \mathrm{A} 128+\mathrm{R} 150 \mathrm{~A} \\ & =\text { R660 + R3 840 + R1 } 500 \\ & =\text { R6 } 000 \end{aligned}$	1A tickets 1A table decorations 2A DJ	L4

Ques	Solution	Explanation	
1.3	$\begin{aligned} \text { Profit if the hall is used } & =\text { R58 } 500-\text { R51 } 000 \\ & =\text { R7 } 500 \quad \checkmark \text { CA } \end{aligned}$ $\begin{aligned} \text { Income if venue } \mathrm{ABC} \text { is used } & =250 \times \mathrm{R} 195 \quad \checkmark \mathrm{M} \\ & =\mathrm{R} 48750 \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Profit if venue ABC is used } & =\text { R48 750-R38 750 } \checkmark \mathrm{M} \\ & =\text { R10 } 000 \quad \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Difference in profit } & =\text { R10 } 000-\text { R7 } 500 \\ & =\text { R2 } 500 \quad \checkmark \checkmark \text { CA } \end{aligned}$	1CA profit using the hall 1M multiplying with 250 1CA income 1M subtracting 1CA profit using ABC 2CA difference	L4
1.4	They will print and sell less tickets $\quad \checkmark \checkmark \mathrm{O}$ OR They would not be responsible to tidy up the venue OR Any other valid reason	2 O valid reason	L4
		[40]	

QUESTION 2 [37 MARKS]			
Ques	Solution	Explanation	
2.1.1		1A total weight 1M dividing by 0,45359 1CA pounds 1 M dividing by 14 1CA stone 1J conclusion	L4
2.1.2 (a)	$\begin{aligned} & \text { Surface area of a cylinder }=2 \times \pi \times \text { radius } \times \text { height } \checkmark \text { SF } \\ &=2 \times 3,142 \times 13 \times 17 \quad \checkmark \mathrm{~A} \\ &=1388,764 \mathrm{~m}^{2} \quad \checkmark \mathrm{CA} \\ & \checkmark \mathrm{M} \\ & \text { Area to be covered }=1388,764-61 \times 2,25 \times 0,98 \\ & \checkmark \mathrm{C} \\ & 1388,764-134,505 \quad \checkmark \mathrm{CA} \\ &=1254,259 \mathrm{~m}^{2} \checkmark \mathrm{CA} \end{aligned}$	1SF substitution 1A radius 1CA surface area cylinder 1 M subtracting 61 louvers 1C conversion 1CA area of the louvers 1CA area to be cladded	L3
$\begin{aligned} & 2.1 .2 \\ & \text { (b) } \end{aligned}$	$\begin{aligned} \text { Circumference of a cylinder } & =2 \times \pi \times \text { radius } \\ & =2 \times 3,142 \times 13 \quad \checkmark \mathrm{SF} \\ & =81,692 \mathrm{~m} \quad \checkmark \mathrm{CA} \\ \text { Number of sides }=\frac{81,692}{5,1} & \checkmark \mathrm{M} \\ & \approx 16 \end{aligned} \quad \checkmark \mathrm{CA}$	1SF substitution 1CA circumference 1M dividing 1CA 16 sides	L2
2.1.3 (a)	Southern view $\quad \checkmark \checkmark$ A (accept south west or south east as well)	2A elevation	L4
2.1.3 (b)	$\begin{aligned} & 32 \mathrm{ft}=10 \mathrm{~m} \\ & 1 \mathrm{ft}=\frac{10}{32}=0,3125 \mathrm{~m} \quad \checkmark \mathrm{M} \\ & 110 \mathrm{ft} \end{aligned}=110 \times 0,3125 .$	1 M using scale to find 1 ft 1CA height	L2

Ques	Solution	Explanation	
$\begin{aligned} & 2.2 .1 \\ & \& \\ & 2.2 .4 \end{aligned}$	2.2.1 4 A At each turn 2.2.4 1A Showing R46 in North -westerly directio 1A Showing R46 in South - westerly directio 1A showing R43	(4)	L2
2.2.2	Total distance from Worcester to Laingsburg $\begin{aligned} & =29 \mathrm{~km}+42 \mathrm{~km}+89 \mathrm{~km} \\ & =160 \mathrm{~km} \\ & \checkmark \mathrm{CA} \end{aligned}$ Distance on N1 to turn off $=125 \mathrm{~km}$ $\begin{aligned} \text { Distance from Laingsburg } & =160 \mathrm{~km}-125 \mathrm{~km} \checkmark \mathrm{M} \\ & =35 \mathrm{~km} \quad \checkmark \mathrm{CA} \end{aligned}$	1 M adding the correct distances 1CA total distance 1 M subtracting 125 km 1CA distance	L3
2.2.3	Total distance travelled $\begin{aligned} & =125 \mathrm{~km}+110 \mathrm{~km}+13,7 \mathrm{~km}+4,9 \mathrm{~km} \\ & =253,6 \mathrm{~km} \quad \sqrt{\mathrm{CA}} \end{aligned}$ $\begin{aligned} 2 \mathrm{~h} 56 \mathrm{~min}=2 & +\frac{56}{60} \mathrm{~h}=\frac{44}{15} \mathrm{~h}=2,9333 \ldots \mathrm{~h} \\ \text { Total distance } & =\text { average speed } \times \text { time } \\ 253,6 \mathrm{~km} & =\text { average speed } \times 2,9333 \ldots \mathrm{~h} \\ \text { Average speed } & =\frac{253,6 \mathrm{~km}}{2,9333 \mathrm{~h}} \quad \checkmark \mathrm{~S} \\ & \approx 86,45 \mathrm{~km} / \mathrm{h} \quad \checkmark \mathrm{CA} \end{aligned}$	1CA total distance 1C converting 1SF substituting 1S change subject of formula 1CA speed	L3
		[37]	

QUESTION 3 [37 MARKS]									
Ques	Solution						Explanation		
3.1.1	$\begin{aligned} & \begin{array}{l} \text { Mean in thousand rand }= \\ \frac{115+65+64,9+100+130+120+88+110+130+135+170+110}{} \\ \hline=12 \checkmark \mathrm{M} / \mathrm{A} \\ =111,491 \quad \checkmark \mathrm{CA} \\ \text { Mean selling price }=\text { R111 } 000 \quad \checkmark \mathrm{R} \end{array} \end{aligned}$						1M/A adding values 1A dividing with 12 1CA mean 1R correctly rounded		L2
3.1.2	R88 000 is 5 years old $\therefore 4$ years older \checkmark A $2013-4=2009 \quad \checkmark \mathrm{~A}$						4 year 2009 WER 0	nce LL MARKS (2)	L3
3.1.3 (a)	Range for 1 year old $=$ R170 $000-\mathrm{R} 130000=$ R40 000Range for 2 year old $=$ R130 $000-$ R110 $000=$ R20 000\therefore 1-year-old cars have the biggest range of prices $\checkmark \mathrm{O}$						A subt A range conclu	(3)	L2
$\begin{aligned} & \text { 3.1.3 } \\ & \text { (b) } \end{aligned}$	The condition of the car (having dents and scratches price decrease) $\quad \checkmark \checkmark$ J The kilometres on the dial (more kilometres price decrease) Or any other valid reason						valid re	(2)	L4
3.1.4 (a)	Scatterplot of the price and age of a car 1A if 3 points are plotted correctly 2A if 6 points are plotted correctly 3A if 9 points are plotted correctly 4A if all the points are plotted correctly								L 2

Ques	Solution	Explanation	
$\begin{aligned} & \text { 3.1.4 } \\ & \text { (b) } \\ & \hline \end{aligned}$	The price of a car decreases as the age increase	2J correct trend (2)	L4
$\begin{aligned} & \text { 3.1.4 } \\ & \text { (c) } \end{aligned}$	Since the values given in the table is decreasing every year but not at a fixed rate, it is possible for a 9 year old car to cost R50 000.	2J reasoning	L4
3.2.1	$49 \checkmark \checkmark$ RG	2RG number of months	L2
3.2.2	9 months $\checkmark \checkmark$ A	2A number of months	L4
3.2.3	$\checkmark \mathrm{A}$ The values are discrete because it is the number of vehicles sold and that must be a whole number. $\checkmark \mathrm{A}$	1A discrete 1A whole number	L4
3.2.4	50% of the months Dealership L sold more than 34 vehicles while Dealership K only sold more than 30 vehicles per month. OR The middle value of Dealership L is higher which means for 6 of the twelve monts the sales exceeded 34 vehicles per \checkmark A month.	2A meaning of median 2A explanation	L4
3.2.5	- Dealership M has the highest number sold in one month namely 60 vehicles ${ }^{A}$ - Dealership M lowest number sold 20 is whilst the other Dealerships have a lowestrof 10 - The lower and the upper quartile values and the median are all higher than - For 3 months (the upper quartile) the sales were more then 49 vehicles per month. $\checkmark \checkmark \mathrm{A}$	2A mentioning maximum value 2A mentioning the minimum value 2A mentioning the quartile values 2A mentioning the upper quartile	L4
		[37]	

QUESTION 4 [36 MARKS]			
Ques	Solution	Explanation	
4.1	$\begin{aligned} \text { A case }=6 \times 4 & =24 \text { cans } \quad \checkmark \mathrm{A} \\ \text { Price per can } & =\frac{\mathrm{R} 137,50}{24} \quad \checkmark \mathrm{M} \\ & =\mathrm{R} 5,73 \quad \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Profit per can } & =\text { R8,00 }-\mathrm{R} 5,73 \quad \checkmark \mathrm{M} \\ & =\mathrm{R} 2,27 \quad \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Percentage added } & =\frac{\mathrm{R} 2,27}{\mathrm{R} 5,73} \times 100 \% \quad \checkmark \mathrm{M} \\ & =39,616 \ldots \% \quad \checkmark \mathrm{CA} \\ & \approx 39,62 \% \end{aligned}$ OR $\begin{aligned} \mathrm{R} 5,73 \times \text { percentage added } & =\mathrm{R} 8,00 \\ \text { Percentage added } & =\frac{\mathrm{R} 8,00}{\mathrm{R} 5,73} \times 100 \% \\ & \approx 139,62 \% \\ \therefore \text { Percentage added } & =139,62 \%-100 \% \checkmark \mathrm{M} \\ & =39,62 \% \quad \checkmark \mathrm{CA} \end{aligned}$	1A number of cans 1 M dividing by 24 1CA price 1M subtracting 1 M finding percentage 1CA percentage OR 1 M finding percentage 1M subtracting 1CA percentage	L3
4.2.1	Yes, most people would go for the cheaper version of the product $\quad \checkmark \checkmark \mathrm{O}$	20 for the reason (2)	L4
4.2.2	$\text { Number of cans sold per week }=6 \times 24=144$ $\begin{aligned} \text { Total profit made on cans } & =144 \times \text { R2,27 } \\ & =\text { R326,88 } \end{aligned}$ $\begin{aligned} \text { Profit per bottle } & =\mathrm{R} 5,00-\mathrm{R} 4,20 \\ & =\mathrm{R} 0,80 \end{aligned}$ $\begin{aligned} \text { Number of bottles to sell } & =\frac{\mathrm{R} 326,88}{\mathrm{R} 0,80} \quad \checkmark \mathrm{M} \\ & =408,6 \\ & \approx 409 \quad \checkmark \mathrm{CA} \end{aligned}$	1A number of cans 1CA profit on cans 1A profit per bottle 1M dividing 1CA number of bottles	L3

Ques	Solution	Explanation	
4.2.3	$\begin{aligned} & \text { Percentage increase of sales } \\ & =\frac{\text { Increased number sold per week }}{\text { Original number sold per week }} \times 100 \% \\ & =\frac{409-144}{144} \times 100 \% \quad \checkmark \mathrm{M} \quad \checkmark \mathrm{SF} \\ & \approx 184,03 \% \quad \checkmark \mathrm{CA} \end{aligned}$	1M subtracting 1SF substituting 1CA percentage	L2
4.2.4	The number of cooldrinks increase from 144 per week to 409 per week. \therefore the percentage increase is 184% This means it is nearly 3 times more than what she sold before. The decrease in the price is from R8,00 to R5,00. A person knowing the price is R8,00 would not have enough money to buy a second bottle, but persons coming with R10 might buy 2 bottles. This will only double her sales. $\checkmark \mathrm{O}$ The increase is just too much.	10 recognising how much more she needs to sell 10 reasoning about the decreased price and its effects 10 conclusion	L4
4.3.1	$\left.\begin{array}{rl} \mathrm{P}(\text { vetkoek })=\frac{6}{18} & =\frac{1}{3} \\ \checkmark \mathrm{~A} \end{array}\right] \begin{aligned} \text { Predicted number } & =\frac{1}{3} \times 12 \quad \checkmark \mathrm{M} \\ & =4 \quad \checkmark \mathrm{CA} \end{aligned}$	1A number of events 1A number of outcomes 1M multiplying probability with 12 1CA predicted number	L3
4.3.2	$\begin{aligned} \mathrm{P}(\text { sweets or cooldrink) } & =\frac{9}{18} \checkmark \mathrm{~A} \\ & =\frac{1}{2} \checkmark \mathrm{CA} \end{aligned}$	1A number of events 1A number of outcomes 1CA simplification	L3

Ques	Solution	Explanation	
4.3.3	$\frac{5}{18}=\frac{144}{\text { number of customers }}$ $\therefore 5 \times$ number of customers $=18 \times 144$ $\begin{aligned} \text { Number of customers } & =\frac{2592}{5} \quad \checkmark \mathrm{~S} \\ & =518,4 \\ & \approx 518 \text { or } 519 \quad \checkmark \mathrm{CA} \end{aligned}$ OR Ratio choosing cooldrink to number of customers is $\begin{gathered} 5: 18 \quad \checkmark \mathrm{~A} \\ \therefore 1: \frac{18}{5} \checkmark \mathrm{~A} \\ \text { Then } 144: \frac{18}{5} \times 144 \quad \checkmark \mathrm{M} \\ \quad 144: 518 \text { or } 144: 519 \quad \checkmark \mathrm{CA} \end{gathered}$	1A probability of cool drink 1A ratio with number of cool drinks 1S changing the subject 1CA number of customers OR 1A ratio 1A unit ratio 1M multiplying 1CA number of customers	L3
4.4	Layout A: Fridge and table near to the door leading to her house Layout B: Fridge and table near the window through which she sells. She should use Layout B. When serving customers the Fridge and table is closer to the window and she will not have to walk so far to fetch vetkoek and cool drinks. Vetkoek and cool drinks are the two items which is more likely to be bought by her customers $\frac{11}{18} \approx 0,6$ or 60% choose those two.	2A comparing the layouts 10 choosing B 10 mentioning something about the distance 10 mentioning the two products more likely to be chosen	L4
		[36]	
		Total :150	

