basic education

Department:
Basic Education REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 150

Symbol	Explanation
M	Method
MA	Method with accuracy
CA	Consistent accuracy
A	Accuracy
C	Conversion
S	Simplification
RT/RG/RD	Reading from a table/graph/diagram
SF	Correct substitution in a formula
O	Opinion/reason/deduction
P	Penalty, e.g. for no units, incorrect rounding off, etc.
R	Rounding off
NP	No penalty for rounding

This memorandum consists of 14 pages.

QUESTION 1 [34 MARKS]			
Ques	Solution	Explanation	Level
1.1.1		1A cost of gas 1A cost of gas piping 1 M adding 1M calculating VAT 1CA simplification	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 2 \end{aligned}$
1.1.2	OPTION 2 Total cost $=$ R3 499,00 + R499,00 + R189,00 + R235,00 $\begin{aligned} &+(4 \times \mathrm{R} 3,50)+(\mathrm{R} 23,50 \times 2)+(\mathrm{R} 350,00 \times 3)+\mathrm{R} 349,00 \\ &=\mathrm{R} 5882,00 \quad \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Difference in price } & =\text { R7 089,20 }- \text { R5 882,00 } \\ & =\text { R1 207,20 } \checkmark \text { CA } \end{aligned}$ Mr Chan's estimation is NOT valid. $\checkmark \mathrm{O}$	2 M for adding all correct values 1CA simplification 1CA for the difference 10 conclusion	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 4 \end{aligned}$
1.1.3	The brand of the gas stove. $\quad \checkmark \checkmark \mathrm{O}$ OR No time to shop around. ${ }^{\checkmark \checkmark \mathrm{O}}$ OR The company will install the stove. $\checkmark \checkmark \mathrm{O}$ OR Reputable dealer $\checkmark \checkmark$ O OR After sales service $\quad \checkmark \checkmark$ O OR Any suitable answer $\quad \checkmark \checkmark \mathrm{O}$	2 O (any suitable answer)	$\begin{aligned} & \hline \text { F } \\ & \text { L4 } \end{aligned}$

Ques	Solution	Explanation	Level
1.2.1	$\left.\begin{array}{l}\text { Length }=5 \text { bottles } \\ \text { Width }=2 \text { bottles } \\ \text { Height }=2 \text { bottles }\end{array}\right\} \checkmark \mathrm{M}$ Number of bottles in cage $=5 \times 2 \times 2=20$ bottles $\checkmark \mathrm{CA}$	1 M for number of bottles per dimension 1CA total number of bottles	$\begin{aligned} & \hline \text { M } \\ & \text { L2 } \end{aligned}$
1.2.2		1 M adding correct lengths 1CA total length 1 M adding correct widths 1CA total width 1C conversion to mm 1CA number of lengths 1CA number of widths 1CA number of shelves	$\begin{aligned} & \hline \text { M } \\ & \text { L3 } \end{aligned}$

Ques	Solution	Explanation	Level
1.3.1	Tax rebate reduces the tax payable $\checkmark \checkmark$ O Medical aid credit reduces the amount of tax to be paid. $\checkmark \checkmark \mathrm{O}$	2 O reason 2 O reason (4)	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 4 \end{aligned}$
1.3.2	$\begin{aligned} & \text { Taxable income }=\text { R742 } 000 \\ & \text { Tax in 2015/2016 } \\ & \quad \checkmark \text { RT } \\ & \text { Tax payable }=\text { R208 } 587+41 \% \text { of }(\mathrm{R} 742000-\mathrm{R} 701300)- \\ & \mathrm{R} 13257-12 \times(2 \times \mathrm{R} 270+3 \times \mathrm{R} 181) \quad \checkmark \mathrm{MA} \\ & =\mathrm{R} 208587+41 \% \text { of }(\mathrm{R} 40700)-\mathrm{R} 13257-12 \times(\mathrm{R} 540+\mathrm{R} 543) \\ & =\text { R208 } 587+\mathrm{R} 16687-\mathrm{R} 13257-\mathrm{R} 12996 \quad \mathrm{CA} \\ & = \\ & =\text { R199 } 021 \checkmark \mathrm{CA} \end{aligned}$ Tax in 2014/2015 $\begin{aligned} \mathrm{TI} & =\mathrm{R} 195212+40 \% \text { of }(\mathrm{R} 742000-\mathrm{R} 673100)-\mathrm{R} 12726-12 \\ \times & (2 \times \mathrm{R} 257+3 \times \mathrm{R} 172) \\ & =\mathrm{R} 195212+40 \% \text { of }(\mathrm{R} 68900)-\mathrm{R} 12726-12 \times(\mathrm{R} 514+\mathrm{R} 516) \\ & =\mathrm{R} 195212+\mathrm{R} 27560-\mathrm{R} 12726-\mathrm{R} 12360 \checkmark \mathrm{CA} \\ & =\text { R197 } 686 \checkmark \mathrm{CA} \end{aligned}$ The statement is NOT valid, the increase is R1 335,00.	1RT tax bracket 1MA correct values 1MA correct values subtracted 1CA simplification 1CA total 1CA simplification 1CA total 10 deduction	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~L} 4 \end{aligned}$
		[34]	

QUESTION 2 [28 MARKS]			
Ques	Solution	Explanation	Level
2.1.1(a)	July salary for a worker on Wage Rate A		$\begin{aligned} & \hline \text { F } \\ & \text { L3 } \end{aligned}$
	$\begin{aligned} & =\mathrm{R} 11000 \times 7 \%+\mathrm{R} 11000 \quad \checkmark \mathrm{M} \\ & \quad \checkmark \mathrm{CA} \\ & =\mathrm{R} 770+\mathrm{R} 11000 \\ & =\mathrm{R} 11770 \quad \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Daily earnings } & =\mathrm{R} 11770 \times 12 \div 365 \\ & =\mathrm{R} 386,9589041 \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Earnings lost after } 28 \text { days } & =\text { R } 386,9589041 \times 28 \\ & =\text { R10 834,85 } \quad \checkmark \mathrm{CA} \end{aligned}$	1 M Calculating the 7% increase 1CA calculating salary after increase 1CA simplification 1 M calculating daily rate 1CA multiplying by 28 1CA calculating loss of earnings	
2.1.1(b)	$\checkmark \checkmark \mathrm{O}$ Workers bills will not be paid./Unpaid bills accumulate interest adding to debt OR $\checkmark \checkmark \mathrm{O}$ Take a long time to make up the money lost due to a strike. OR Workers can become unemployed if the company closes its doors due to a prolonged strike. $\quad \checkmark \checkmark \mathrm{O}$ OR Workers can be retrenched due to loss of business. $\checkmark \checkmark \mathrm{O}$	2 O for any correct reason	$\begin{aligned} & \hline \text { F } \\ & \text { L4 } \end{aligned}$

Ques	Solution	Explanation	Level
2.1.2	Pay at the end of July if not on strike		$\begin{aligned} & \hline \text { F } \\ & \text { L4 } \end{aligned}$
	$\begin{aligned} & =\text { R6 } 000+\mathrm{R} 6000 \times 8 \% \quad \checkmark \mathrm{MA} \\ & =\text { R6 } 000+\mathrm{R} 480 \end{aligned}$	1M calculating salary increase if not on strike	
	$=\mathrm{R} 6480,00 \quad \checkmark \mathrm{CA}$	1CA calculating new salary	
	Lost income due to 28 day strike		
	$=$ R6 $480 \times 12 \div 365 \times 28$		
	$=\mathrm{R} 213,04 \times 28$		
	$=\operatorname{R5} 965,15 \quad \checkmark \mathrm{CA}$	1CA calculating loss in income for 28 days of	
	Gain in increase after strike	striking	
	$=\mathrm{R} 6000 \times 2 \%$		
	$=\mathrm{R} 120 \quad \checkmark \mathrm{CA}$	1CA calculating diff in increase if on strike	
	Salary gained from end July 2014 till end of June 2014 $=120 \times 11$		
	$=\mathrm{R} 1320,00 \quad \checkmark \mathrm{CA}$	1CA calculating gained salary	
	No, he will not be able to cover the loss. $\checkmark \mathrm{O}$	10 Conclusion (6)	

Ques	Solution	Explanation	Level
2.2.1	No change in employment. OR Employment numbers remain the same.	2 O interpretation	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~L} 4 \end{aligned}$
2.2.2	The year $2009 \quad \checkmark \checkmark$ A Number of jobs lost $\begin{aligned} & =153000+259000+527000-143000 \quad \checkmark \checkmark \mathrm{RT} \\ & =796000 \quad \checkmark \mathrm{CA} \end{aligned}$	1 A reading correct year. 2RT reading correct values from table 1CA simplification	$\begin{aligned} & \text { DH } \\ & \text { L3 } \end{aligned}$
2.2.3	The year 2011^{\checkmark} RT All four quarters were positive improvement was experienced 2011: $\begin{aligned} & =\frac{5+18+197+218}{4 \checkmark \mathrm{M}} \\ & =109,5 \text { thousand } \\ & =109500 \quad \checkmark \mathrm{CA} \end{aligned}$	1 RT stating the correct years 2011 and 2013 1MA adding all scores 1M dividing by 4 1CA calculating the mean	$\begin{aligned} & \text { DH } \\ & \text { L3 } \end{aligned}$
2.2.4	Number of people $\begin{aligned} & \quad \stackrel{\checkmark \mathrm{M}}{\mathrm{M}} \quad \begin{array}{l} \checkmark \mathrm{A} \\ = \\ =15000 \\ =15000-(141000+344000+133000) \\ = \\ =14382000-618000 \end{array} \quad \checkmark \mathrm{CA} \end{aligned}$	1 A reading correct values 1 M subtracting 1CA simplification	$\begin{aligned} & \hline \text { DH } \\ & \text { L3 } \end{aligned}$
		[28]	

QUESTION 3 [37 MARKS]			
Ques	Solution	Explanation	Level
3.1.1	$71 \checkmark \checkmark$ A	2A correct number of seats	$\begin{aligned} & \hline \text { MP } \\ & \text { L2 } \end{aligned}$
3.1.2	Ratio of Business class seats to Economy seats $\begin{aligned} & =26: 80 \checkmark \mathrm{~A} \quad \checkmark \mathrm{~A} \\ & =13: 40 \checkmark \mathrm{CA} \end{aligned}$	1 A counting 26 1 A counting 80 1CA simplified ratio	$\begin{aligned} & \hline \text { MP } \\ & \text { L2 } \end{aligned}$
3.1.3	\checkmark O - Get up turn left walk down the aisle to the galley/kitchen. - Turn right, walk to the next aisle/pass the galleys and turn left. - Walk straight down this aisle till row 38 , his friend is on his right hand side. $\checkmark \mathrm{O}$ OR $\checkmark \mathrm{O} \quad \checkmark \mathrm{O}$ - Get up turn left walk down the aisle past the galley/kitchen - Continue straight and pass the toilets at the rear, turn right - Walk to the next aisle and turn right - Walk straight to the second row from the back and the friend is on his left hand side	10 turn left 10 galley 10 turn right 10 turn left 10 right hand side. 10 turn left 10 galley 10 turn right 10 turn right 10 left hand side	$\begin{aligned} & \text { MP } \\ & \text { L2 } \end{aligned}$
3.1.4	$\begin{aligned} \text { Probability } & =\frac{9^{\checkmark} \times \mathrm{A}}{26} \times 100 \% \\ & =34,62 \% \end{aligned}$	1A numerator 1A denominator 1CA percentage	$\begin{aligned} & \hline \mathrm{P} \\ & \mathrm{~L} 2 \end{aligned}$
3.1 .5	The comfort due to space or types of seat OR Better on-board services received. $\checkmark \checkmark \mathrm{O}$ OR More luggage allowed $\quad \checkmark \checkmark \mathrm{O}$ OR Any suitable answer	2 O reason	$\begin{aligned} & \text { MP } \\ & \text { I } 4 \end{aligned}$

Ques	Solution	Explanation	Level
3.2	Distance in $\mathrm{km}=\frac{5222,086}{0,6215} \mathrm{~km}=8402 \mathrm{~km} \checkmark \mathrm{C}$ $\begin{array}{ll}\text { Time taken }=24 \mathrm{~h}-17 \mathrm{~h} 14 \mathrm{~min}+4 \mathrm{~h} 11 \mathrm{~min} & \checkmark \mathrm{~A} \\ \text { Time }=10,95 \mathrm{hrs} \quad \checkmark \mathrm{C} & \\ & \checkmark \mathrm{M}\end{array}$ Speed $=\frac{8402}{10,95} \mathrm{~km} / \mathrm{h}=767,31 \mathrm{~km} / \mathrm{h}$ Speed in knots $=\frac{767,31}{1,852}=414,31$	1C to km 1A correct time 1 C converting to hr 1M substitution 1CA speed 1CA speed in knots	$\begin{aligned} & \hline \text { M } \\ & \text { L3 } \end{aligned}$
3.3.1	$\begin{aligned} \mathrm{A} & =\$ 175000 \div 250{ }^{\checkmark \mathrm{M}} \quad \text { OR } \quad \mathrm{A}=\frac{\$ 79500-27000^{\checkmark}}{75} \\ & =700 \text { belts } \quad \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \mathrm{B} & =\$ 27000+\$ 75 \times 800 \quad \checkmark \mathrm{M} \\ & =\$ 87000 \quad \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \mathrm{C} & =\$ 250 \times 400 \\ & =\$ 100000 \quad \checkmark \mathrm{CA} \end{aligned}$	1 M dividing by 250 1CA simplification 1M adding US\$27 000 and multiplying by US\$75 1CA simplification 1 A value	$\begin{aligned} & \hline \text { F } \\ & \text { L2 } \\ & \text { L3 } \end{aligned}$
3.3.2	$\begin{aligned} & \quad \checkmark \mathrm{A} \\ & \text { Income }=\$ 250 \times 800+\$ 175 \times 1000 \\ & =\$ 375000 \quad \checkmark \mathrm{CA} \end{aligned}$	1A income from belts 1A income from T-shirts 1CA simplification	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 2 \end{aligned}$

QUESTION 4 [29 MARKS]			
Ques	Solution	Explanation	
4.1.1	$\begin{gathered} \checkmark \mathrm{RT} \\ 46 \% \text { of } 538421=247674 \checkmark \mathrm{~A}, ~ \end{gathered}$ The closest is Gauteng with 246989 . OR Gauteng $=\frac{\begin{array}{c}\checkmark \mathrm{RT} \\ 538429\end{array} \times 100 \%=45,87 \%}{}$ Gauteng. $\quad \checkmark \mathrm{A}$	1RT reading data from table 1A calc. percentage 1A province 1RT reading data from table 1A calc. percentage 1A province	$\begin{aligned} & \hline \mathrm{DH} \\ & \mathrm{~L} 2 \end{aligned}$
4.1.2	$\begin{aligned} \mathrm{P}(\text { teacher from EC) } & =\frac{61260}{390608}^{\checkmark \mathrm{A}} \quad \checkmark \mathrm{M} \\ & =0,1568 . . \\ & \approx 0,16 \text { OR } 15,68 \% \end{aligned}$	1A number of teachers 1 M probability	$\begin{array}{\|l\|} \hline \mathrm{P} \\ \mathrm{~L} 3 \end{array}$
4.1.3	$\begin{aligned} & \text { Total number of learners }=9 \times 1346335 \quad \checkmark \mathrm{M} \\ & = \\ & =12117015 \checkmark \mathrm{CA} \\ & \checkmark \mathrm{~V} \end{aligned} \quad \begin{array}{r} \mathrm{A}=12117015-\left(\begin{array}{l} 1889307+656408+1944486+2831311 \\ +1034151+284908+784184+1026744) \end{array}\right. \\ \begin{array}{r} \mathrm{A}=12117015-10451499 \checkmark \mathrm{M} \\ =1665516 \checkmark \mathrm{CA} \end{array} \\ \hline \end{array}$	1 M multiplying 1CA simplification 1 A adding all correct values 1 M subtracting correct values 1 CA the value of A	$\begin{aligned} & \mathrm{DH} \\ & \mathrm{~L} 2 \\ & \mathrm{~L} 3 \end{aligned}$
4.1.4	Public School's teacher-pupil ratio $\begin{array}{\|} \checkmark \mathrm{M} \\ 390608: 12117015 \checkmark \mathrm{M} \\ 1: 31,0209 \quad \checkmark \mathrm{CA} \end{array}$ Independent Schools $\begin{array}{r} 34482: 538421 \\ 1: 15,6145 \\ \checkmark \mathrm{M} \\ \mathrm{CA} \end{array}$ The educator's statement is valid.	1 M correct values used 1 M concept of ratio 1CA simplified ratio 1 M correct values and ratio 1CA simplified ratio 10 correct deduction	$\begin{aligned} & \hline \text { DH } \\ & \text { L4 } \end{aligned}$

Ques	Solution	Explanation	Level
4.1.5	Learners' population increase every year. $\checkmark \checkmark \mathrm{O}$ OR Learners transfer out of special schools to ordinary schools $\checkmark \checkmark$ O	2 O reason 2O Reason (2)	$\begin{aligned} & \hline \mathrm{DH} \\ & \mathrm{~L} 4 \end{aligned}$
4.2.1	$\mathrm{R} 530 \times 672 \underset{290}{\vee \mathrm{M}} \times 12=\mathrm{R} 4275764 \text { 400,00. } \checkmark \checkmark \mathrm{A}$	1M multiplying 2A solution	$\begin{aligned} & \text { DH } \\ & \text { L2 } \end{aligned}$
4.2.2	\checkmark A KZN with highest: $\begin{aligned} & \text { 2014/2015: } \\ & \frac{2901697-2866570}{2866570} \times 100 \% \\ & =1,2254 \ldots \% \\ & \approx 1,23 \% \end{aligned}$	1A correct province 1M/A calculation 1CA percentage	$\begin{aligned} & \hline \text { DH } \\ & \text { L3 } \end{aligned}$
4.3	Length of table $=1,75 \mathrm{~m}$ Half the length of the table $=1,75 \mathrm{~m} \div 2=0,875 \stackrel{\checkmark}{\mathrm{~A}}$ If scale 1 : 8 is used $\begin{aligned} & \text { Length of model }=7,5 \mathrm{~m} \div 8 \times 1 \quad \checkmark \mathrm{M} \\ &=0,9375 \mathrm{~m} \\ & \checkmark \mathrm{CA} \end{aligned}$ $0,9375 \mathrm{~m}$ will not fit on the actual table. Therefor the scale of $1: 8$ will NOT be suitable.	1A calculating half the table size 1 M using the scale 1CA calculating modal length 2 O deduction	$\begin{aligned} & \text { MP } \\ & \text { L4 } \end{aligned}$
		[29]	

QUESTION 5 [22 MARKS]			
Ques	Solution	Explanation	
5.1.1	$\begin{aligned} & \text { Volume of a cylinder }=\pi \times(\text { radius })^{2} \times \text { height } \\ & \qquad \begin{aligned} 60 \mathrm{~m}^{3}=3,142 \times(\text { radius })^{2} \times 7,35 \mathrm{~m} \quad \checkmark \mathrm{SF} \end{aligned} \\ & \begin{aligned} \text { (radius) }^{2}= & \frac{60 \mathrm{~m}^{3}}{3,142 \times 7,35 \mathrm{~m}} \quad \checkmark \mathrm{M} \\ = & 2,598111173 \mathrm{~m}^{2} \\ \text { radius }= & \sqrt{2,598111173} \quad \checkmark \mathrm{M} \\ = & 1,611865743 \mathrm{~m} \quad \checkmark \mathrm{CA} \\ \text { diameter }= & 1,611865743 \mathrm{~m} \times 2 \\ = & 3,223731486 \mathrm{~m} \quad \checkmark \mathrm{CA} \end{aligned} \end{aligned}$	1S substituting 1M changing the subject 1M square root 1CA radius 1CA diameter	M
5.1.2	$\begin{aligned} \text { Total capacity } & =4 \times 60 \mathrm{~m}^{3} \quad \checkmark \mathrm{M} \\ & =240 \mathrm{~m}^{3} \\ & =240000 \ell \quad \checkmark \mathrm{C} \\ \text { Capacity in gallon } & =\frac{240000}{3,7} \quad \checkmark \mathrm{M} \\ & \approx 64864,86 \quad \checkmark \mathrm{CA} \end{aligned}$	1M multiplying 1C convert to ℓ 1M dividing 1CA gallons (4)	M
5.1.3	$\begin{aligned} \text { Volume of fertiliser in silos } & =\left(15 \% \times 60 \mathrm{~m}^{3}\right)+\left(\frac{1}{4} \times 60 \mathrm{~m}^{3}\right) \\ & =9 \mathrm{~m}^{3}+15 \mathrm{~m}^{3} \\ & =24 \mathrm{~m}^{3} \checkmark \mathrm{~A} \end{aligned}$ Fertiliser needed for wheat field $\quad \checkmark \mathrm{M}$ $=1055 \text { acres } \times 22,65 \mathrm{~kg}$ $=23895,75 \mathrm{~kg}$ $=\frac{23895,75}{1,3} \text { litre }$ $=18381,35 \text { litre } \checkmark \mathrm{C}$ $\begin{aligned} \text { Volume of fertiliser needed } & =18381,35 \div 1000 \\ & =18,38 \ldots \mathrm{~m}^{3} \\ & \approx 18,4 \mathrm{~m}^{3} \checkmark \mathrm{C} \end{aligned}$ She will have enough fertiliser for the wheat field. \checkmark O	$1 \mathrm{M} \%$ and $\frac{1}{4}$ of 60 1A volume of silos 1M multiply by 22,65 1C convert to ℓ 1C conversion 10 deduction	M

Ques	Solution	Explanation	
5.2	June, July, Aug.		P
			L2
	Mean $(2012)=\frac{93,8+282,2}{3}$	1M concept of	L4
	$=142,73 \mathrm{~mm} \quad \checkmark \mathrm{~A}$	mean	
	Mean (2013) $=244,2+56,2+19,0$		
	$\begin{aligned} & =\frac{3}{2} \quad \checkmark \mathrm{~A} \\ & =106,47 \mathrm{~mm} \quad \checkmark \end{aligned}$	1A mean 2012	
	$\operatorname{Mean}(2014)=\frac{316,4+32,6+14,8}{2}$		
	$\begin{gathered} \quad 3 \\ =121,27 \mathrm{~mm} \\ -68,0+16,4+215,2 \end{gathered}$	1A mean 2013	
	$\begin{aligned} & =\frac{3}{}=99,8667 \mathrm{~mm} \text {, } \end{aligned}$ The probability will be 75%. $\quad \checkmark$ CA	1A mean 2014	
		2CA probability in \%	
		(7)	
		[22]	
		TOTAL: 150	

