

basic education

Department:
Basic Education REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 150

Symbol	Explanation
M	Method
M/A	Method with accuracy
CA	Consistent accuracy
A	Accuracy
C	Conversion
S	Simplification
RT/RG	Reading from a table/Reading from a graph
SF	Correct substitution in a formula
O	Opinion/Example
P	Penalty, e.g. for no units, incorrect rounding off, etc.
R	Rounding off
NPR	No penalty for rounding

This memorandum consists of 14 pages.

QUESTION 1 [37 MARKS]			
Ques	Solution	Explanation	Level
1.1	Rental: R $12600 \vee$ RT	1RT Correct rental amount 1MA adding 1CA total salaries	L3
	Telephone: R $240 \times \frac{\checkmark \text { MA }}{8}=$ R330 $\checkmark \mathrm{CA}$ Transport cost: $\begin{aligned} & \quad \stackrel{\checkmark \mathrm{M}}{\checkmark \mathrm{MA}} \\ & =\mathrm{R} 34238-(\mathrm{R} 16271+\mathrm{R} 517+\mathrm{R} 330+\mathrm{R} 12600) \\ & =\mathrm{R} 4520 \checkmark \mathrm{CA} \end{aligned}$	1M multiplying \% 1CA decreased packaging cost 1 M increase in given ratio 1CA telephone cost 1M subtracting 1MA adding values 1CA transport cost	
1.2	January: $\frac{46487}{\sqrt{ } \text { M MA }} \times 100 \%=32,58 \% \quad \checkmark \mathrm{CA}$ February: $\frac{466663}{150349} \times 100 \%=31,04 \% \quad \checkmark \mathrm{CA}$ March: $\frac{59046}{162215} \times 100 \%=36,4 \% \checkmark \mathrm{CA}$ The highest average percentage mark-up was in March	1MA Using correct values and calculating the mark up 1CA for calculating January mark-up \% 1CA for calculating February mark-up \% 1CA for calculating March mark-up \% 10 Choice	L2

Ques	Solution	Explanation	Level
1.3	Total net income for the first quarter $\begin{aligned} & =\text { R19 } 885+\text { R18 } 936+\text { R24 } 808 \\ & =\text { R63 } 629 \quad \checkmark \text { MA } \end{aligned}$ $\begin{aligned} \text { Average net income per month } & =\text { R63 } 629 \div 3 \\ & =\mathrm{R} 21209,67 \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Projected amount } & =\text { R21 } 209,67 \times 12 \\ & =\text { R254 } 516 \checkmark \mathrm{CA} \end{aligned}$ The projected amount is valid \quad O OR Total net income for the first quater The projected amount is valid	1MA total net income 1CA ave. monthly income 1CA calculating estimated net income per year. 10 validity OR 1MA calculating total net income 1CA multiplying with 4 1CA estimated net income 10 validity	L4
1.4.1	Handbags $\quad \checkmark \checkmark$ A	2A correct product	L2
1.4.2	$\text { Width } \approx 5 \mathrm{~cm} \checkmark \mathrm{~A}$ $\begin{aligned} \therefore \text { Actual width } & =5 \times 100 \mathrm{~cm} \checkmark \mathrm{M} \\ & =500 \mathrm{~cm} \text { or } 5 \mathrm{~m} \checkmark \mathrm{CA} \end{aligned}$	1 A measurement 1M using scale 1CA actual width [Accept measurements from $4,8 \mathrm{~cm}$ to $5,2 \mathrm{~cm}$] (3)	L3

Ques	Solution	Explanation	Level
1.5	$\begin{aligned} & \text { Volume of a cylinder }=\pi \times(\text { (radius })^{2} \times \text { height } \\ & 100 \mathrm{ml}=3,142 \times(\text { (radius })^{2} \times 4 \mathrm{~cm} \quad \checkmark \mathrm{SF} \\ & \checkmark \mathrm{C} \\ & 100 \mathrm{~cm}^{3}=12,568 \text { (radius }^{2} \\ & \frac{100}{12,568}=\frac{12,568 \text { (radius) }^{2}}{12,568} \quad \checkmark \mathrm{MA} \\ & 7,956715468=(\text { (radius) })^{2} \\ & \sqrt{7,956715468}=\sqrt{(\text { radius })^{2}} \\ & 2,82076505=\text { radius } \checkmark \mathrm{CA} \\ & \text { Diameter }=2,82076505 \times 2 \mathrm{~cm} \\ &=5,6415301 \mathrm{~cm} \quad \checkmark \mathrm{CA} \end{aligned}$	1SF substitution 1 C converting to cm^{3} 1MA simplifying 1CA radius 1CA diameter	L3

| Ques | Solution | Explanation | Level |
| :--- | :--- | :--- | :--- | :--- |
| 1.6 .2 | Approximately $540 \mathrm{~km} \quad \checkmark \checkmark \mathrm{RG}$ | 2RG values between 520 km
 and 575 km | L3 |
| 1.6 .3 | Toyota Yaris: Approx R2 $390 \quad \checkmark \mathrm{RG}$
 The Toyota Yaris will be the cheapest when travelling a
 distance of 1850 km | 1RG reading correct value
 1O for choice | L3 |

QUESTION 2 [31 MARKS]			
Ques	Solution	Explanation	Level
2.1.1	South West $\quad \checkmark$ A	2A direction	L2
2.1.2	Aqua scene $\quad \checkmark \mathrm{A}$ Darwin Entertainment Centre \checkmark A	1A for each of the places of interest	L2
2.1.3	Turn left into McMinn Street continue till reaching Stuart HWY. Turn right onto Stuart HWY continue till you reach Bagot Rd. $\checkmark \mathrm{A}$ $\checkmark \mathrm{A}$ Turn left onto Bagot Rd continue north and at Rapid Creek, turn left onto Trower Rd. Proceed on this road till you see the shopping centre on your left hand side.	1A left into McMinn Street 1A right Stuart 1A left Bagot 1A left Trower	L2
2.1.4	$\begin{aligned} & \text { Distance }=\text { average speed } \times \text { time } \\ & 12,4 \mathrm{~km}=\text { average speed } \times 18 \mathrm{~min} \quad \checkmark \mathrm{SF} \\ & 12,4 \mathrm{~km}=\text { average speed } \times \frac{18}{60} \text { hours } \quad \checkmark \mathrm{C} \\ & \begin{aligned} \text { Average Speed } & =\frac{12,4 \mathrm{~km}}{\frac{18}{60} \text { hour }} \\ & =41,3 \mathrm{~km} / \mathrm{h} \quad \checkmark \mathrm{CA} \end{aligned} \end{aligned}$ The travel time is due to slow traffic flow since an average speed of $60 \mathrm{~km} / \mathrm{h}$ is normal in built up areas.	1SF substitution 1C conversion 1CA average speed 10 justification	L4

Ques	Solution	Explanation	Level
2.2.1	$\begin{aligned} \text { ATM cash withdrawal fee for R500 } & =\text { R } 3,50+1,1 \% \text { of value } \\ & =\text { R 3,50 }+1,1 \% \times \text { R500 } \quad \checkmark \mathrm{SF} \\ & =\text { R } 9,00 \quad \checkmark \mathrm{CA} \end{aligned}$ Four ATM cash withdrawals of R500 each $=4 \times$ R9,00 $=$ R36,00 Five debit orders $=5 \times$ R12,00 $=$ R60,00 $\quad \checkmark$ CA $\begin{aligned} & \text { Seven debit card purchases }=7 \times \mathrm{R} 0,00=\mathrm{R} 0,00 \checkmark \mathrm{~A} \\ & \begin{aligned} \text { Cash Deposit fee (in branch) } & =\mathrm{R} 11,00+1,35 \% \text { of value } \\ & =\mathrm{R} 11,00+1,35 \% \times \mathrm{R} 4500 \\ & =\mathrm{R} 71,75 \quad \checkmark \mathrm{CA} \end{aligned} \end{aligned}$ $\begin{aligned} \text { Monthly fee } & =\text { R36,00 + R } 60,00+\mathrm{R} 0,00+\mathrm{R} 71,75 \quad \checkmark \mathrm{MA} \\ & =\text { R167,75 } \checkmark \text { CA } \end{aligned}$	1 SF Using correct fee and substitution 1CA Amount 1CA Calculating fee 1CA Calculating fee 1A no fee for debit 1SF correct formula 1CA amount 1MA adding values 1 CA monthly fee	L4
2.2.2	$\begin{aligned} \text { Number of times more } & =\frac{\mathrm{R} 167,75}{\mathrm{R} 53} \text { MA } \\ & =3,165 \\ & \approx 3 \end{aligned} \checkmark \mathrm{CA}$ More than three times the minimum monthly fee Elizabeth was correct. OR $\begin{aligned} & \checkmark \mathrm{M} \\ & 3 \times \mathrm{R} 53=\mathrm{R} 159 \quad \checkmark \mathrm{CA} \end{aligned}$ R167,75 is more than three times the minimum monthly fee Elizabeth was correct $\checkmark \mathrm{O}$	1MA calculating the number of times 1CA the rounded value 10 verification OR 1M multiplying 1CA the amount 10 verification	L4
2.2.3	Fixed monthly option $=$ R 104,00 Four ATM cash withdrawals of R500,00 each $=$ R0,00 \checkmark A Five debit orders Seven debit card purchases $=$ R0,00 $\checkmark \mathrm{A}$ One cash deposit of R 4 500,00 each = R0,00 Monthly fee $=$ R104,00 \checkmark A	2ACost of transactions 1A for fee of R104,00	L2
2.2.4	She can use her bank/debit card to pay for these goods and services. Once-off withdrawal equivalent to four times the weekly amount spend to deduct each month.	2 O reason 2 O reason (4)	L4

QUESTION 3 [25 MARKS]			
Ques	Solution	Explanation	Level
3.1.1	$2655 \mathrm{~km}: 1650$ miles OR $\frac{2655 \mathrm{~km}}{2655}: \frac{1650 \text { miles }}{2655} \checkmark$ MA 2655 km : 1650 miles $1 \mathrm{~km}=0,6214689266$ miles 1650 miles $1 \mathrm{~km} \approx 0,6215$ miles $\checkmark \mathrm{S}$ $1,6 \mathrm{~km} \approx 1$ mile $\quad \checkmark \mathrm{S}$	1MA dividing 1S simplification	L3
3.1.2	Greenland is an irregular shape, $\checkmark \checkmark \mathrm{O}$ and it is not a rectangle.	2 O explanation (2)	L4
3.1.3	```\(\stackrel{\checkmark}{ } \stackrel{\text { A }}{ }\) April 6 days + May 31 days + June 30 days + July 31 days + \(\checkmark\) A August 18 days \(=116\) days \(\checkmark \mathrm{C} \mathrm{A}\)``` The midnight sun lasts 116 days	1A 6 days in April 1A 18 days in August 1A rest of the months 1CA total days	L3
3.2.1	$\begin{aligned} & \text { Population density }=\frac{\text { Total number of persons living on the island }}{\text { ice-free area (in km }{ }^{2} \text {) }} \\ & =\frac{56370 \text { persons }}{2166086 \times 19 \% \mathrm{~km}^{2}} \checkmark \mathrm{~A} \quad \checkmark \mathrm{SF} \\ & =\frac{56370 \text { persons }}{411556,34 \mathrm{~km}^{2}} \quad \checkmark \mathrm{CA} \\ & =0,1369678815 \text { persons } / \mathrm{km}^{2} \\ & \approx 0,1 \text { persons } / \mathrm{km}^{2} \quad \checkmark \mathrm{CA} \end{aligned}$	1SF substituting 1A 19 \% 1CA ice-free area 1CA population density	L3
3.2.2	Number of indigenous persons living in Nuuk in 2003 $\begin{aligned} & \quad \checkmark \mathrm{A} \\ & =75 \% \times 9000 \checkmark \mathrm{RG} \\ & =6750 \checkmark \mathrm{CA} \end{aligned}$	1A 75 \% 1RG number of inhabitants [accept values from 8 000 but less that 10 000] 1CA number of indigenous persons	L3

Ques	Solution ${ }^{\text {a }}$ Explanation		Level
3.2.3	$4 \checkmark \mathrm{~A} \checkmark \mathrm{~A} \quad$ 2A number of towns		L2
3.3.1	Range $=$ Highest value - Lowest value $=\left(0,6{ }^{\circ} \mathrm{C}\right)-\left(-28,9^{\circ} \mathrm{C}\right) \quad \checkmark \mathrm{MA}$ 1MA concept of range $=29,5^{\circ} \mathrm{C} \quad \checkmark \mathrm{CA}$ 1CA range	2)	L2
3.3.2	Monthly maximum and minimum temperature data for Ivituut		L3

Question 4 (27 marks)			
Ques	Solution	Explanation	Level
4.1.1	$\begin{aligned} \mathrm{P} & =\frac{342171}{1300771} \checkmark \mathrm{~A} \\ & \approx 0,263 \checkmark \mathrm{CA} \end{aligned}$	1A total light vehicle learner licenses 1A total number of learner licences 1CA probability in decimal form	L3
4.1.2	Gauteng: $\begin{array}{rcc} 102 \text { 191:293094 } & \checkmark \tag{A}\\ & 1: \frac{293094}{102191} & \checkmark \mathrm{MA} \\ \therefore \quad 1: 2,868 & \checkmark \mathrm{CA} \end{array}$ Limpopo: $\begin{array}{r} 8234: 98151 \\ 1: \frac{98151}{8234} \\ \therefore \quad 1: 11,925 \end{array}$ $\checkmark 0$ The ratio for Limpopo is higher than for Gauteng	1A working with the correct values 1MA dividing to find unit ratio 1CA simplification 1CA simplification 10 comparison	L3
4.1.3	$\begin{aligned} & \text { Gauteng: } \begin{aligned} & \frac{415818}{1300771} \times 100 \% \\ & \approx 32 \% \quad \checkmark \mathrm{CA} \\ \text { Limpopo: } & \frac{107702}{1300771} \times 100 \% \\ & \approx 8,3 \% \quad \checkmark \mathrm{CA} \end{aligned} \end{aligned}$ The population of Limpopo is less than that of Gauteng. OR The main mode of transport in Gauteng is cars. OR Any other valid reason	1CA percentage 1CA percentage 2J reason	$\begin{aligned} & \text { L2(2) } \\ & \text { L4(2) } \end{aligned}$
4.1.4	She needs to compare the number of learners who passed the Light Motor vehicle licence to the total number of learners who wrote the test for light motor vehicle licence. OR Table 4 data cannot be used to calculate the probability of passing OR Incorrect data/wrong data was used	3J reason	L4

Ques	Solution	Explanation	Level
4.2.1	Drivers have very little driving experience. $\quad \checkmark \checkmark$ O	2 O explanation (2)	L4
4.2.2 (a)	Amount to be paid by Keitumetse - compulsory excess payment of R2 000. - payment of R 1000 for being under 25 years old. \checkmark A - payment of R2 000 for drivers' licence of less than 2 years. $\text { Total excess to be paid }=\text { R5 } 000 \quad \checkmark \text { CA }$ $\begin{aligned} \text { Percentage of claim amount } & =\frac{5000}{13400,50} \times 100 \% \quad \checkmark \mathrm{M} \\ & \approx 37,31 \% \end{aligned} \checkmark \mathrm{CA}$	1A for R2 000 1A for other 2 amounts 1CA the total amount 1 M calculating percentage 1CA percentage of his claim	L3
4.2.2 (b)	Amount to be paid by Keitumetse's father - Payment of R2 000 for the compulsory excess. RT $\begin{aligned} & \text { Insurance compensation }=\text { value of damage }- \text { excess value } \\ &=\text { R13 400,50 }- \text { R2 000 } \\ &=\text { R11 400,50 } \checkmark \text { MA } \\ & \quad \checkmark \mathrm{M} \\ & \frac{11400,50}{13400,50} \times 100 \%=85 \% \checkmark \mathrm{CA} \\ & \checkmark \mathrm{~V} \end{aligned}$ He is correct; it is more than 80%.	1RT the amount 1MA the total payable 1 M percentage calculating 1CA percentage 10 verification	L4

QUESTION 5 [30 MARKS]			
Ques	Solution	Explanation	Level
5.1.1	$\begin{aligned} & \text { Median }=\frac{\mathrm{P}+55}{2}=55 \quad \checkmark \mathrm{M} \\ & \therefore \mathrm{P}=55 \quad \checkmark \mathrm{~A} \\ & \text { Mean }=\frac{\text { sum of the marks }}{\text { total number of students }} \\ & 49,25=\frac{1124+\mathrm{Q}}{24} \quad \checkmark \mathrm{CA} \\ & 1182=1124+\mathrm{Q} \quad \checkmark \mathrm{~S} \\ & \therefore \mathrm{Q}=58 \quad \checkmark \mathrm{CA} \end{aligned}$	1M concept of median 1A value of P 1CA the sum 1124 1S the total 1182 1CA value of Q	L3
5.1.2	$\begin{aligned} \mathrm{P}_{\text {(less than } 80 \%)} & =\frac{21}{24} \quad \checkmark \mathrm{CA} \\ & =\frac{7}{8} \text { OR } 0,875 \text { OR } 87,5 \% \quad \checkmark \mathrm{~S} \end{aligned}$	1CA probability 1S simplification	L2
5.1.3	Group A: Quartile $1=28^{\checkmark \text { RG }} \quad$ OR $\frac{23+33}{2}=28$ Quartile $3=75 \checkmark$ RG Inter quartile range $=75-28$ $=47 \quad \checkmark \mathrm{CA}$ Group B: Inter quartile range $=70-30$ $=40 \quad \checkmark \mathrm{~A}$ \therefore Group B has a lower inter quartile range $\checkmark \mathrm{O}$ \checkmark A \therefore Group B performed better because they have a higher median and a smaller inter quartile range. $\checkmark \mathrm{O}$	1RG estimate the value Q1 1RG estimate the value Q3 1CA the IQR 1A group B IQR 10 comparing IQRs 1A comparing the median percentages 10 explaining group B did better	$\begin{aligned} & \hline \text { L3(5) } \\ & \text { L4(2) } \end{aligned}$

Ques	Solution	Explanation	Level
5.2.1(a)	A Both the bath room door and Bedroom 2 door must open to the inside and not the outside as on the plan. $\quad \checkmark \mathrm{O}$ If the doors open to the outside the open doors covers the entrance to Bedroom 1 and the master bedroom	1A identifying the doors 10 explanation 10 explanation	L4
5.2.1(b)	\checkmark O The toilet pans are positioned against the interior walls which make the sewer pipes to run in the walls or under the foundation, which is against building regulation. $\checkmark \mathrm{O}$ The toilet pans must be positioned next to exterior walls for the sewer pipes to go through the wall. $\checkmark 0$ The master bedroom toilet pan must be moved to the exterior wall next to the window.	10 identifying the position of the toilet pans 2 O alternative position	L4
5.2.2	Family Room and Kitchen $\quad \checkmark \checkmark$ O	2 O identifying the rooms	L4
5.2.3	$\begin{aligned} & \begin{array}{r} \checkmark \\ \text { Actual length } \end{array} \\ &=33 \mathrm{~mm} \times 125 \\ &=4125 \mathrm{~mm}=412,5 \mathrm{~cm} \checkmark \mathrm{CA} \\ & \text { Actual breadth }=28 \mathrm{~mm} \times 125 \\ &=3500 \mathrm{~mm}=350 \mathrm{~cm} \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Floor area of the room in } \mathrm{cm}^{2} & =\text { length } \times \text { breadth } \\ & =412,5 \times 350 \\ & =144375 \checkmark \mathrm{CA} \end{aligned}$ \therefore minimum area of the window in cm^{2} $\begin{aligned} & =144375 \times 11,5 \% \\ & =16603,125 \quad \checkmark \mathrm{CA} \end{aligned}$ Area of the window in $\mathrm{cm}^{2}=$ width \times height $16603,125=220 \times$ height $\begin{aligned} \therefore \text { height in } \mathrm{cm} & =\frac{16603,125}{220} \checkmark \mathrm{M} \\ & =75,46875 \\ & \approx 75 \quad \checkmark \mathrm{CA} \end{aligned}$	1A using scale 1CA length 1CA breadth 1C converting 1CA area of room 1CA area of the window 1M finding the height 1CA rounding off	L4

