

# basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA** 

NATIONAL SENIOR CERTIFICATE

## GRADE 12

## MATHEMATICAL LITERACY P2

\_ \_ \_ \_ \_ \_ \_

#### **FEBRUARY/MARCH 2015**

### **MEMORANDUM**

**MARKS: 150** 

| Symbol | Explanation                                              |
|--------|----------------------------------------------------------|
| М      | Method                                                   |
| M/A    | Method with accuracy                                     |
| CA     | Consistent accuracy                                      |
| А      | Accuracy                                                 |
| С      | Conversion                                               |
| S      | Simplification                                           |
| RT/RG  | Reading from a table/Reading from a graph                |
| SF     | Correct substitution in a formula                        |
| 0      | Opinion/Example                                          |
| Р      | Penalty, e.g. for no units, incorrect rounding off, etc. |
| R      | Rounding off                                             |
| NPR    | No penalty for rounding                                  |

#### This memorandum consists of 14 pages.

Copyright reserved

Please turn over

|      | TION 1 [ 37 MARKS]                                                                                                                                         |                                                                                   | 1     |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------|
| Ques | Solution                                                                                                                                                   | Explanation                                                                       | Level |
| 1.1  | Rental: R 12 600 $\checkmark$ RT<br>$\checkmark$ MA<br>Salaries: R 9 715 + R 6 556 = R 16 271 $\checkmark$ CA                                              | 1RT Correct rental<br>amount<br>1MA adding<br>1CA total salaries                  | L3    |
|      | Packaging<br>R 965,00 × 46,425% OR R 965,00 × (100% – 46,425%)<br>= R 448,00 $\checkmark$ M<br>$\therefore$ R965,00 – R448,00<br>= R517,00 $\checkmark$ CA | 1M multiplying %<br>1CA decreased packaging<br>cost                               |       |
|      | Telephone: R 240 × $\frac{11}{8}$ = R330 $\checkmark$ CA                                                                                                   | 1M increase in given ratio<br>1CA telephone cost                                  |       |
|      | Transport cost:<br>$\sqrt{M}$ $\sqrt{MA}$<br>= R 34 238 - (R 16 271 + R 517 + R 330 + R 12 600)                                                            | 1M subtracting<br>1MA adding values                                               |       |
|      | $= R 4 520 \checkmark CA$                                                                                                                                  | 1CA transport cost (10)                                                           |       |
| 1.2  | January: $\frac{46487}{142702} \times 100\% = 32,58\%  \checkmark CA$                                                                                      | 1MA Using correct values<br>and calculating the mark<br>up<br>1CA for calculating | L2    |
|      | February: $\frac{466663}{150349} \times 100\% = 31,04\% \checkmark CA$                                                                                     | January mark-up %<br>1CA for calculating<br>February mark-up %                    |       |
|      | March: $\frac{59\ 046}{162\ 215}$ × 100% = 36,4% $\checkmark$ CA                                                                                           | 1CA for calculating<br>March mark-up %                                            |       |
|      | The highest average percentage mark-up was in March $\checkmark O$                                                                                         | 10 Choice (5)                                                                     |       |

| Ques  | Solution                                                                                                     | Explanation                                           | Level |
|-------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------|
| 1.3   | Total net income for the first quarter<br>= R19 885 + R18 936 + R24 808                                      | 1MA total net income                                  | L4    |
|       | = R63 629 $\checkmark$ MA<br>Average net income per month = R63 629 $\div$ 3<br>= R21 209,67 $\checkmark$ CA | 1CA ave. monthly income                               |       |
|       | Projected amount = R21 209,67 × 12<br>= R254 516 $\checkmark$ CA                                             | 1CA calculating estimated net income per year.        |       |
|       | The projected amount is valid $\sqrt{O}$                                                                     | 10 validity                                           |       |
|       | OR                                                                                                           | OR                                                    |       |
|       | Total net income for the first quater<br>= R19 885 + R18 936 + R24 808 = R63 629 $\checkmark$ MA             | 1MA calculating total net income                      |       |
|       | Projected amount = R63 629 $\times$ 4 $\checkmark$ CA                                                        | 1CA multiplying with 4                                |       |
|       | = R254 516 ✓CA                                                                                               | 1CA estimated net income                              |       |
|       | The projected amount is valid                                                                                | 10 validity (4)                                       |       |
| 1.4.1 | Handbags $\checkmark \checkmark A$                                                                           | 2A correct product (2)                                | L2    |
| 1.4.2 | Width $\approx 5 \text{ cm}^{\checkmark} \text{A}$                                                           | 1 A measurement                                       | L3    |
|       | $\therefore$ Actual width = 5 × 100 cm $\checkmark$ M                                                        | 1M using scale                                        |       |
|       | $= 500 \text{ cm} \text{ or } 5 \text{ m} \checkmark \text{CA}$                                              | 1CA actual width                                      |       |
|       |                                                                                                              | [Accept measurements from<br>4,8 cm to 5,2 cm]<br>(3) |       |

| Ques | Solution                                                                                     | Explanation                      | Level |
|------|----------------------------------------------------------------------------------------------|----------------------------------|-------|
| 1.5  | Volume of a cylinder = $\pi \times (radius)^2 \times height$                                 |                                  | L3    |
|      | $100 \text{ ml} = 3,142 \times (\text{radius})^2 \times 4 \text{ cm}  \checkmark \text{SF}$  | 1SF substitution                 |       |
|      | $100 \text{ cm}^3 = 12,568 \text{ (radius)}^2$                                               | 1C converting to cm <sup>3</sup> |       |
|      | $\frac{100}{12,568} = \frac{12,568(\text{radius})^2}{12,568}  \checkmark \text{MA}$          | 1MA simplifying                  |       |
|      | $7,956715468 = (radius)^2$                                                                   |                                  |       |
|      | $\sqrt{7,956715468} = \sqrt{(\text{radius})^2}$                                              |                                  |       |
|      | $2,82076505 = radius  \checkmark CA$                                                         | 1CA radius                       |       |
|      | Diameter = $2,82076505 \times 2 \text{ cm}$<br>= $5,6415301 \text{ cm} \checkmark \text{CA}$ | 1CA diameter (5)                 |       |

5 NSC – Memorandum



| Ques  | Solution                                                                     | Explanation                                    | Level |
|-------|------------------------------------------------------------------------------|------------------------------------------------|-------|
| 1.6.2 | Approximately 540 km ✓✓ RG                                                   | 2RG values between 520 km<br>and 575 km<br>(2) | L3    |
| 1.6.3 | Toyota Yaris: Approx R2 390 ✓ RG ✓ O                                         | 1RG reading correct value<br>10 for choice     | L3    |
|       | The Toyota Yaris will be the cheapest when travelling a distance of 1 850 km | (2)                                            |       |

| QUESTION 2 [31 MARKS] |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                   |       |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------|
| Ques                  | Solution                                                                                                                                                                                                                                                                                                                                               | Explanation                                                                                       | Level |
| 2.1.1                 | South West $\checkmark \checkmark A$                                                                                                                                                                                                                                                                                                                   | 2A direction (2)                                                                                  | L2    |
| 2.1.2                 | Aqua scene ✓ A<br>Darwin Entertainment Centre ✓ A                                                                                                                                                                                                                                                                                                      | 1A for each of the places of interest                                                             | L2    |
| 2.1.3                 | $\checkmark$ ATurn left into McMinn Street continue till reaching Stuart HWY. $\checkmark$ ATurn right onto Stuart HWY continue till you reach Bagot Rd. $\checkmark$ A $\checkmark$ ATurn left onto Bagot Rd continue north and at Rapid Creek, turn leftonto Trower Rd. Proceed on this road till you see the shopping centreon your left hand side. | (2)<br>1A left into McMinn<br>Street<br>1A right Stuart<br>1A left Bagot<br>1A left Trower<br>(4) | L2    |
| 2.1.4                 | Distance = average speed × time<br>12,4 km = average speed × 18 min ✓ SF<br>12,4 km = average speed × $\frac{18}{60}$ hours ✓ C<br>Average Speed = $\frac{12,4 \text{ km}}{\frac{12,4 \text{ km}}{60}}$<br>= 41,3 km/h ✓ CA<br>✓ O<br>The travel time is due to slow traffic flow since an average speed of<br>60 km/h is normal in built up areas.    | 1SF substitution<br>1C conversion<br>1CA average speed<br>1O justification                        | L4    |
|                       | 60 km/h is normal in built up areas.                                                                                                                                                                                                                                                                                                                   | (4)                                                                                               |       |

| Ques  | Solution                                                                                                                                         | Explanation                                                        | Level |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------|
| 2.2.1 | ATM cash withdrawal fee for $R500 = R \ 3,50 + 1,1\%$ of value<br>= $R \ 3,50 + 1,1\% \times R500  \checkmark SF$<br>= $R \ 9,00  \checkmark CA$ | 1 SF Using correct fee                                             | L4    |
|       | Four ATM cash withdrawals of R500 each = $4 \times R9,00 = R36,00$                                                                               | 1CA Calculating fee                                                |       |
|       | Five debit orders = $5 \times R12,00 = R60,00$ $\checkmark$ CA                                                                                   | 1CA Calculating fee                                                |       |
|       | Seven debit card purchases = $7 \times R0,00 = R0,00 \checkmark A$                                                                               | 1A no fee for debit                                                |       |
|       | Cash Deposit fee (in branch) = R 11,00 + 1,35% of value<br>= R 11,00 + 1,35% × R4 500 $\checkmark$ SF<br>= R 71,75 $\checkmark$ CA               | 1SF correct formula<br>1CA amount                                  |       |
|       | Monthly fee = $R36,00 + R60,00 + R0,00 + R71,75$ $\checkmark$ MA<br>= $R167,75$ $\checkmark$ CA                                                  | 1MA adding values<br>1 CA monthly fee<br>(9)                       |       |
| 2.2.2 | Number of times more $= \frac{R167,75}{R53}$ MA<br>= 3,165 $\checkmark$ CA<br>$\approx 3$                                                        | 1MA calculating the<br>number of times<br>1CA the rounded<br>value | L4    |
|       | More than three times the minimum monthly fee Elizabeth was correct.                                                                             | 10 verification                                                    |       |
|       | OR                                                                                                                                               | OR                                                                 |       |
|       | ✓ M<br>$3 \times R53 = R159$ ✓ CA<br>R167,75 is more than three times the minimum monthly fee<br>Elizabeth was correct ✓ O                       | 1M multiplying<br>1CA the amount<br>10 verification                |       |
| 2.2.3 | Fixed monthly option = R 104,00<br>Four ATM cash withdrawals of R500,00 each = R0,00<br>Five debit orders = R0,00                                | (3)                                                                | L2    |
|       | Seven debit card purchases $= R0,00 \checkmark A$ One cash deposit of R 4 500,00 each $= R0,00$ Monthly fee = R104,00 \checkmark A               | 2ACost of transactions<br>1A for fee of R104,00<br>(3)             |       |
| 2.2.4 | She can use her bank/debit card to pay for these goods and services. $\checkmark \checkmark O$                                                   | 2 O reason                                                         | L4    |
|       | Once-off withdrawal equivalent to four times the weekly amount spend to deduct each month.                                                       | 2 O reason (4)                                                     |       |

| -     | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Euplanation                                                                                  | Long  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------|
| Ques  | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Explanation                                                                                  | Level |
| 3.1.1 | $2\ 655\ \text{km} : 1\ 650\ \text{miles}$ <b>OR</b> $2\ 655\ \text{km} : 1\ 650\ \text{miles}$ $\frac{2\ 655\ \text{km}}{2\ 655\ \text{s}} : \frac{1\ 650\ \text{miles}}{2\ 655\ \text{s}} \checkmark \text{MA}$ $2\ 655\ \text{km} : 1\ 650\ \text{miles}$ $\frac{2\ 655\ \text{km}}{2\ 655\ \text{s}} : \frac{1\ 650\ \text{miles}}{2\ 655\ \text{s}} \checkmark \text{MA}$ $\frac{2\ 655\ \text{km}}{1\ 650\ \text{s}} : \frac{1\ 650\ \text{miles}}{1\ 650\ \text{s}} \longrightarrow \text{MA}$ $1\ \text{km} = 0.6214\ 6892\ 66\ \text{miles}$ $1.6090909\ \text{km} = 1\ \text{mile}$ $1\ \text{km} \approx 0.6215\ \text{miles}$ $\checkmark\ \text{S}$ | 1MA dividing<br>1S simplification<br>(2)                                                     | LS    |
| 3.1.2 | Greenland is an irregular shape, $\checkmark \checkmark O$ and it is not a rectangle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20 explanation (2)                                                                           | L4    |
| 3.1.3 | $\checkmark A$ April 6 days + May 31 days + June 30 days + July 31 days +<br>$\checkmark A$ August 18 days = 116 days $\checkmark C A$ The midnight sun lasts 116 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1A 6 days in April<br>1A 18 days in August<br>1A rest of the months<br>1CA total days<br>(4) | L3    |
| 3.2.1 | Population density = $\frac{\text{Total number of persons living on the island}}{\text{ice-free area}(\text{in km}^2)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                              | L3    |
|       | $=\frac{56\ 370\ \text{persons}}{2\ 166\ 086\times 19\%\ \text{km}^2} \checkmark A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1SF substituting<br>1A 19 %                                                                  |       |
|       | $= \frac{56370 \text{ persons}}{411556,34 \text{ km}^2} \checkmark CA$<br>= 0,1369678815 persons/km <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1CA ice-free area                                                                            |       |
|       | $\approx 0,1 \text{ persons/ km}^2$ $\checkmark CA$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1CA population<br>density<br>(4)                                                             |       |
| 3.2.2 | Number of indigenous persons living in Nuuk in 2003<br>$\checkmark A$<br>$= 75\% \times 9\ 000 \ \checkmark RG$<br>$= 6\ 750 \ \checkmark CA$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1A 75 %<br>1RG number of<br>inhabitants<br>[accept values from 8<br>000 but less that 10     | L3    |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 000]<br>1CA number of<br>indigenous persons<br>(3)                                           |       |

10 NSC – Memorandum



| Question 4 (27 marks) |                                                                                                                                                                                                                                                                                                           |                                                                                                                                          |                |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Ques                  | Solution                                                                                                                                                                                                                                                                                                  | Explanation                                                                                                                              | Level          |
| 4.1.1                 | $P = \frac{342\ 171}{1300\ 771} \stackrel{\checkmark}{\checkmark} A$<br>$\approx 0.263 \stackrel{\checkmark}{\checkmark} CA$                                                                                                                                                                              | 1A total light vehicle<br>learner licenses<br>1A total number of learner<br>licences<br>1CA probability in decimal<br>form<br>(3)        | L3             |
| 4.1.2                 | Gauteng:<br>$102 \ 191 : 293 \ 094 \qquad \checkmark  A$<br>$1 : \frac{293094}{102191} \qquad \checkmark  MA$<br>$\therefore  1 : 2,868 \qquad \checkmark  CA$<br>Limpopo:<br>$8 \ 234 : 98 \ 151$<br>$1 : \frac{98 \ 151}{8 \ 234}$<br>$\therefore  1 : 11,925 \qquad \checkmark  CA$<br>$\checkmark  O$ | 1A working with the<br>correct values<br>1MA dividing to find unit<br>ratio<br>1CA simplification<br>1CA simplification<br>10 comparison | L3             |
|                       | The ratio for Limpopo is higher than for Gauteng                                                                                                                                                                                                                                                          | (5)                                                                                                                                      | L2(2)          |
| 4.1.3                 | Gauteng: $\frac{415818}{1300771} \times 100\%$<br>$\approx 32\% \checkmark CA$<br>Limpopo: $\frac{107702}{1300771} \times 100\%$                                                                                                                                                                          | 1CA percentage                                                                                                                           | L2(2)<br>L4(2) |
|                       | $\approx 8,3\%$ $\checkmark$ CA<br>$\checkmark \checkmark$ J<br>The population of Limpopo is less than that of Gauteng.<br>OR<br>The main mode of transport in Coutons is core                                                                                                                            | 1CA percentage<br>2J reason                                                                                                              |                |
|                       | The main mode of transport in Gauteng is cars.<br>OR<br>Any other valid reason                                                                                                                                                                                                                            | (4)                                                                                                                                      |                |
| 4.1.4                 | She needs to compare the number of learners who passed<br>the Light Motor vehicle licence to the total number of<br>learners who wrote the test for light motor vehicle licence.<br><b>OR</b><br>Table 4 data cannot be used to calculate the probability of<br>passing                                   | 3J reason                                                                                                                                | L4             |
|                       | OR                                                                                                                                                                                                                                                                                                        |                                                                                                                                          |                |
|                       | Incorrect data/wrong data was used                                                                                                                                                                                                                                                                        | (3)                                                                                                                                      |                |

12 NSC – Memorandum

| Ques         | Solution                                                                                                                                                                                                                                                    | Explanation                                                          | Level       |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------|
| 4.2.1        | Drivers have very little driving experience. $\checkmark \checkmark O$                                                                                                                                                                                      | 20 explanation                                                       | Level<br>L4 |
|              |                                                                                                                                                                                                                                                             | (2)                                                                  |             |
| 4.2.2<br>(a) | <ul> <li>Amount to be paid by Keitumetse</li> <li> <ul> <li>compulsory excess payment of R2 000.</li> <li>payment of R 1 000 for being under 25 years old. ✓ A</li> <li>payment of R2 000 for drivers' licence of less than 2 years.</li> </ul> </li> </ul> | 1A for R2 000<br>1A for other 2 amounts                              | L3          |
|              | Total excess to be paid = $R5\ 000$ $\checkmark$ CA                                                                                                                                                                                                         | 1CA the total amount                                                 |             |
|              | Percentage of claim amount = $\frac{5000}{13400,50} \times 100\%$ $\checkmark$ M<br>$\approx 37,31\%$ $\checkmark$ CA                                                                                                                                       | 1M calculating percentage<br>1CA percentage of his claim<br>(5)      |             |
| 4.2.2<br>(b) | Amount to be paid by Keitumetse's father<br>- Payment of R2 000 for the compulsory excess. RT                                                                                                                                                               | 1RT the amount                                                       | L4          |
|              | Insurance compensation = value of damage – excess value<br>= R13 400,50 – R2 000<br>= R11 400,50 $\checkmark$ MA<br>$\frac{11400,50}{13400,50} \times 100\% = 85\% \qquad \checkmark CA$                                                                    | 1MA the total payable<br>1M percentage calculating<br>1CA percentage |             |
|              | $\begin{array}{c} 13400,50 \\ \text{He is correct; it is more than 80\%.} \end{array}$                                                                                                                                                                      | 10 verification (5)                                                  |             |

| Ques  | TION 5 [30 MARKS] Solution                                                                                                                                                                                                                                                                    | Explanation                                                                                                                                   | Level          |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 5.1.1 | Median = $\frac{P+55}{2} = 55$ $\checkmark$ M<br>$\therefore P = 55$ $\checkmark$ A                                                                                                                                                                                                           | 1M concept of median<br>1A value of P                                                                                                         | L3             |
|       | Mean = $\frac{\text{sum of the marks}}{\text{total number of students}}$ $49,25 = \frac{1124 + Q}{24} \checkmark CA$ $1182 = 1124 + Q \checkmark S$ $\therefore Q = 58 \checkmark CA$                                                                                                         | 1CA the sum 1124<br>1S the total 1182<br>1CA value of Q<br>(5)                                                                                |                |
| 5.1.2 | P <sub>(less than 80%)</sub> = $\frac{21}{24}$ ✓ CA<br>= $\frac{7}{8}$ OR 0,875 OR 87,5% ✓ S                                                                                                                                                                                                  | 1CA probability<br>1S simplification                                                                                                          | L2             |
|       | 8                                                                                                                                                                                                                                                                                             | (2)                                                                                                                                           |                |
| 5.1.3 | Group A:<br>Quartile 1 = 28<br>Quartile 3 = 75 $\checkmark$ RG<br>Inter quartile range = 75 - 28<br>= 47 $\checkmark$ CA<br>Group A:<br>23+33<br>2 = 28<br>23+33<br>2 = 28<br>CR                                                                                                              | 1RG estimate the value Q1<br>1RG estimate the value Q3<br>1CA the IQR                                                                         | L3(5)<br>L4(2) |
|       | Group B:<br>Inter quartile range = $70 - 30$<br>= $40 \checkmark A$<br>$\therefore$ Group B has a lower inter quartile range $\checkmark O$<br>$\checkmark A$<br>$\therefore$ Group B performed better because they have a higher<br>median and a smaller inter quartile range $\checkmark O$ | <ul> <li>1A group B IQR</li> <li>1O comparing IQRs</li> <li>1A comparing the median percentages</li> <li>10 completing group B did</li> </ul> |                |
|       | median and a smaller inter quartile range. $\checkmark$ O                                                                                                                                                                                                                                     | 10 explaining group B did<br>better (7)                                                                                                       |                |

| Ques     | Solution                                                                                                                                                                                                                                                                                                                                                                                                 | Explanation                                                                  | Level |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------|
| 5.2.1(a) | $\checkmark$ A<br>Both the bath room door and Bedroom 2 door must open to<br>the inside and not the outside as on the plan. $\checkmark$ O                                                                                                                                                                                                                                                               | 1A identifying the doors<br>1O explanation                                   | L4    |
|          | If the doors open to the outside the open doors covers the entrance to Bedroom 1 and the master bedroom                                                                                                                                                                                                                                                                                                  | 10 explanation (3)                                                           |       |
| 5.2.1(b) | ✓ O<br>The toilet pans are positioned against the interior walls<br>which make the sewer pipes to run in the walls or under<br>the foundation, which is against building regulation.<br>✓O<br>The toilet pans must be positioned next to exterior walls<br>for the sewer pipes to go through the wall.<br>✓ O<br>The master bedroom toilet pan must be moved to the<br>exterior wall next to the window. | 10 identifying the position<br>of the toilet pans<br>20 alternative position | L4    |
|          |                                                                                                                                                                                                                                                                                                                                                                                                          | (3)                                                                          |       |
| 5.2.2    | Family Room and Kitchen ✓✓ O                                                                                                                                                                                                                                                                                                                                                                             | 20 identifying the rooms (2)                                                 | L4    |
| 5.2.3    | Actual length = $33 \text{ mm} \times 125$<br>= 4 125 mm = 412,5 cm ✓ CA<br>Actual breadth = $28 \text{ mm} \times 125$<br>= $3500 \text{ mm} = 350 \text{ cm} \checkmark \text{CA}$                                                                                                                                                                                                                     | 1A using scale<br>1CA length<br>1CA breadth<br>1C converting                 | L4    |
|          | Floor area of the room in $cm^2 = length \times breadth$<br>= 412,5 × 350<br>= 144 375 $\checkmark$ CA<br>$\therefore$ minimum area of the window in $cm^2$<br>= 144 375 × 11,5%<br>= 16 603,125 $\checkmark$ CA                                                                                                                                                                                         | 1CA area of room<br>1CA area of the window                                   |       |
|          | Area of the window in $cm^2 = width \times height$<br>16 603,125 = 220 × height                                                                                                                                                                                                                                                                                                                          | Terr area of the window                                                      |       |
|          | $\therefore \text{ height in cm} = \frac{16603,125}{220} \checkmark \text{M}$ $= 75,46875$ $\approx 75 \checkmark \text{CA}$                                                                                                                                                                                                                                                                             | 1M finding the height<br>1CA rounding off                                    |       |
|          |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              |       |
|          |                                                                                                                                                                                                                                                                                                                                                                                                          | (8)                                                                          |       |