basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 150

Symbol	Explanation
M	Method
M/A	Method with accuracy
CA	Consistent accuracy
A	Accuracy
C	Conversion
S	Simplification
RT/RG	Reading from a table/Reading from a graph
SF	Correct substitution in a formula
O	Opinion/Example
P	Penalty, e.g. for no units, incorrect rounding off, etc.
R	Rounding off
NPR	No penalty for rounding

This memorandum consists of 20 pages.

[^0]

[^1]| Ques | Solution | Explanation | |
| :---: | :---: | :---: | :---: |
| 1.2.3 | $\mathbf{B}=\frac{15+\sqrt{16} \mathrm{~A}}{2}=15,5 \checkmark \mathrm{CA}$ $\mathbf{C}=\frac{16+17}{2}=16,5 \checkmark \mathrm{CA}$ $\mathbf{D}=17 \quad \checkmark \mathrm{CA}$ | 1A identifying the correct values
 1 CA value of B
 [If only B = 15 then one mark
 and
 If answer only $\mathrm{B}=23$ then one mark]
 1 M concept of median
 1 CA value of C
 1 CA value of D | L2 |
| | | Answer Only full marks (5) | |
| 1.2.4 | $\begin{aligned} \mathrm{P} & =\frac{30}{40} \checkmark \mathrm{~A} \\ & =0,75 \checkmark \mathrm{CA} \end{aligned}$ | 1A 30 grade 9 boys
 1A no. of boys 40
 1CA decimal
 Answer Only full marks | L2 |
| | | (3) | |
| 1.2.5 | The grade 9 boys are too old for their grade. $\checkmark \checkmark$ J
 OR
 Social: $\checkmark \checkmark \mathrm{J}$
 Need recognition / low self- esteem / identity crisis.
 OR
 Economic:
 To gain favours from others. $\checkmark \checkmark \mathrm{J}$
 OR
 Educational:
 They are frustrated by their lack of progress. $\checkmark \checkmark \mathrm{J}$
 OR
 Environmental factors/ emotional factors $\checkmark \checkmark \mathrm{J}$
 OR $\checkmark \checkmark \mathrm{J}$
 Contextual factors/ No parental control/Peer pressure
 OR $\checkmark \checkmark \mathrm{J}$
 Violent community / child headed family/gang related | 2J reason | L4 |
| | | (2) | |

Ques	Solution	Explanation	
1.3.1	Total cost in Rand of persons more than $15 \checkmark \mathrm{~A}$ OR Total cost (in Rand) $\begin{array}{cc} \checkmark \mathrm{A} & \checkmark \mathrm{~A} \\ = & \checkmark \mathrm{A} \\ 300+(\text { the number of persons }-15) \times 50 \end{array}$ OR Total cost (in Rand) $\left.\begin{array}{cc} \checkmark \mathrm{A} & \vee \mathrm{~A} \\ =300 \end{array} \stackrel{\vee \mathrm{~A}}{\mathrm{~V}-15} \text { persons }\right) \times 50$ Where n is the number of persons more than 15 OR Total cost (in Rand) $\begin{array}{cc} \checkmark \mathrm{A} & \checkmark \mathrm{~A} \\ = & \\ \text { (number of persons) } \times 50-450 & \checkmark \checkmark \mathrm{~A} \end{array}$	1A constant cost 1A 15 persons 1A number of persons more than 15 1A multiply by the rate R50 OR 1A constant cost 1A using 15 persons 1 A using a variable with explanation 1A multiply by the rate R50 OR 1A constant cost 1A using 15 persons 1 A using a variable with explanation 1A multiply by the rate R50 OR $2 A-450$ 1A number of persons 1A multiply by the rate R50	
1.3.2 (a)		1SF Substituting in formula 1A Maximum number OR 2 RT Max number of passengers [Both 25 and 27 one mark and 25 only, no marks]	L3

Ques	Solution	Explanation	
$\begin{gathered} 1.3 .2 \\ \text { (b) } \end{gathered}$	10 learners +1 teacher 10 learners +1 teacher $\quad \checkmark \checkmark$ MA 4 learners +1 teacher $\therefore 24$ learners and 3 teachers ${ }^{\vee}$ A $\begin{gathered} 24: 3 \checkmark \mathrm{CA} \\ =8: 1 \quad \checkmark \mathrm{CA} \end{gathered}$ OR 1 educator for 10 learners $\therefore \frac{1}{11} \times 27=2,454545 \ldots \text { teachers } \quad \checkmark \text { MA }$ $\therefore 3$ teachers $\checkmark \mathrm{R}$ And 24 learners 24:3 \checkmark CA 8: $1 \checkmark$ CA	NB: Use CA from Q1.3.2(a) 2MA working with ratio 1A Number of teachers 1CA ratio in correct order 1CA simplified ratio OR 1MA working with ratio 1CA number of teachers 1R Rounding up 1CA ratio in correct order 1CA simplified ratio	L3
1.3.3	There is only one double six. $\checkmark \mathrm{A}$ There is 6 combinations of seven. $\checkmark \mathrm{A}$ \therefore Mr Boitumelo has a larger probability than Miss Ansie to accompany the learners. $\checkmark \mathrm{O}$ $\begin{gathered} \quad \checkmark \mathrm{A} \quad \text { OR } \\ \mathrm{P}_{\text {(double six) }}=\frac{1}{36} \approx 2,8 \% \\ \mathrm{P}_{\text {(seven) }}=\frac{6}{36}=\frac{1}{6} \approx 16,7 \% \quad \checkmark \mathrm{~A} \end{gathered}$ \therefore Mr Boitumelo has a larger probability than Miss Ansie to accompany the learners. $\checkmark \mathrm{O}$	1A probability of double six 1A probability of seven 10 explanation OR 1A probability of double six 1A probability of seven 10 explanation	L4
		[38]	

QUESTION 2 [33MARKS]			
Ques	Solution	Explanation	
2.1.1	$\begin{aligned} \text { Volume of petrol } & =\frac{\mathrm{R} 500}{\mathrm{R} 14,04} \text { litre } \quad \checkmark \mathrm{M} \\ & =35,61253561 \text { litre } \checkmark \mathrm{A} \end{aligned}$ Distance each model can travel with $35,613 \ell$ of petrol:	1 M dividing by R14,04/ € 1A volume	
	Sonic 1.6 : $\frac{35,613}{6,7} \times 100 \mathrm{~km} \approx 531,54 \mathrm{~km} \quad \checkmark \mathrm{CA}$	1CA distance	
	Aveo $1.6: \frac{35,613}{7,3} \times 100 \mathrm{~km} \approx 487,85 \mathrm{~km} \quad \checkmark \mathrm{CA}$	1CA distance	
	\therefore Sonic 1.6 will travel a greater distance. $\checkmark \checkmark$ OOR	2 O conclusion	
	$\text { Volume of petrol }=\frac{\mathrm{R} 500}{\mathrm{R} 14,04 / \ell}=35,613 \ell \quad \checkmark \mathrm{~A}$ Finding distance using consumption rate for each model:	1 M dividing by	
		R14,04/ l 1A volume	
	$\text { Sonic rate }=\frac{100 \mathrm{~km}}{6,7 \ell}=14,925 \mathrm{~km} / \ell$		
	Distance $=14,925 \mathrm{~km} / \ell \times 35,613 \approx 531,5 \mathrm{~km} \quad \checkmark \mathrm{CA}$	1CA distance	
	$\text { Aveo rate }=\frac{100 \mathrm{~km}}{7,3 \ell}=13,70 \mathrm{~km} / \ell$		
	Distance $=13,70 \mathrm{~km} / \ell \times 35,613 \approx 487,9 \mathrm{~km} \quad \checkmark$ CA	1CA distance	
	\therefore Sonic 1.6 will travel a greater distance. $\quad \checkmark \checkmark$ O	20 conclusion [Correct conclusion only 2 marks]	
		(6)	L3

Ques	Solution	Explanation	
2.1.2	Number of stops and the length of stopping while the engine is running. $\quad \checkmark \mathrm{O}$ OR The driving pattern of the driver for example fast acceleration and hard breaking. ${ }^{\checkmark}$ O OR \checkmark O Driving at high speeds with open windows OR Use of the air conditioner. $\checkmark \mathrm{O}$ OR The condition of the car with relation to tyre pressure, load, etc. $\checkmark \mathrm{O}$ OR $\quad \checkmark \mathrm{O}$ Condition of the road surface, and the slope of the road. $\checkmark \mathrm{O} \quad \text { OR }$ Mechanical fault / condition / Electronic damage OR Load and number of passengers in vehicle $\checkmark \mathrm{O}$ OR Traffic congestion $\checkmark \mathrm{O}$	10 any FIRST correct factor 10 for any SECOND correct factor	L4
2.1.3	Sonic Monthly petrol cost (in Rand) $\begin{gathered} \checkmark \mathrm{M} \checkmark \mathrm{~A} \checkmark \mathrm{MA} \\ =\frac{35000}{12} \times 14,04 \times \frac{6,7}{100}=2743,65 \checkmark \mathrm{CA} \end{gathered}$ $\begin{aligned} \text { Total running cost(in Rand) } & =2743,65+2657,00 \\ & =5400,65 \checkmark \mathrm{CA} \end{aligned}$ Aveo Monthly petrol cost (in Rand) $\begin{aligned} & =\frac{35000}{12} \times 14,04 \times \frac{7,3}{100}=2989,35 \checkmark \mathrm{CA} \\ & \begin{aligned} \text { Total running cost(in Rand) } & =2989,35+1942,00 \\ & =4931,35 \checkmark \mathrm{CA} \end{aligned} \end{aligned}$ \therefore Aveo 1.6 is more economical. $\checkmark \mathrm{O}$ OR	1M dividing by 12 1A multiply petrol price 1MA multiply by consumption rate 1 CA petrol cost Sonic 1CAtotal running cost for the Sonic 1 CA petrol cost Aveo 1CA total running cost for the Aveo 10 conclusion [3 out of 8 marks if petrol cost ignored]	

Ques	Solution	Explanation	
2.2.1	Age 6 to 7 years. ${ }^{\checkmark}$ R RG	2RG the age [6 or 7 one mark] [Including other intersection points ONLY one mark]	L2
2.2.2	Growth is a continuous phenomenon. $\checkmark \mathrm{O}$ OR Growth is affected by many factors like nutrition and health. OR $\checkmark \mathrm{O}$ It is influenced by genetic makeup inherited from parents. OR This graph is for average heights. $\checkmark \mathrm{O}$ OR Physical disabilities will influence height $\checkmark \mathrm{O}$	10 any FIRST correct reason 10 for any SECOND correct reason	L4
2.2.3	$\begin{aligned} & \text { Between } 4 \text { and } 6 \text { years } \quad \checkmark \mathrm{RG} \\ & \text { Between } 11 \text { and } 14 \text { years } \quad \checkmark \mathrm{RG} \end{aligned}$	1RG reading from graph 1RG reading from graph [5 and 13 only one mark]	L2
2.2.4	Boys stay longer than girls in childhood. $\checkmark \checkmark$ RG Both girls and boys remain the same in pre-adolescence $\sqrt{ } \mathrm{RG}$ Girls stay longer in adolescence. $\quad \checkmark \checkmark$ RG OR	2RG comparing childhood stage 1RG comparing preadolescence 2RG comparing adolescence OR	L4

Ques	Solution	Explanation	
2.2.4 Cont.	Childhood Girls stay in childhood stage: 7 years $\quad \checkmark \checkmark$ RG Boys stay in childhood stage: 9 years Pre-adolescence Girls stay in pre-adolescent stage: 2 years Boys stay in pre-adolescent stage: 2 years \checkmark RG Adolescence Girls stay in adolescent stage: 6 years Boys stay in adolescent stage: 4 years $\quad \checkmark \checkmark$ RG	2RG number of years in childhood 1RG number of years in pre-adolescence 2RG number of years in adolescence	
2.2.5	The girls’ height slows down/stabilizes/levels/evens out. $\checkmark \checkmark \mathrm{O}$ OR $\checkmark \checkmark$ O The girls' growth rate relating to height decreases.	20 trend [0 marks or 2 marks] [Trend relating to girls only]	L4
2.2.6	$\begin{array}{lr} \text { Height in inches } & \checkmark \mathrm{C} \\ =165 \times 0,3937 & \checkmark \mathrm{~A} \\ =64,9605 & \checkmark \mathrm{~A} \end{array}$ $\checkmark \checkmark$ CA The boy's height is above the average height for boys OR Height in cm $\begin{aligned} & =\frac{63}{0,3937} \quad \checkmark \mathrm{C} \\ & =160,02 \\ & \quad \checkmark \mathrm{~A} \end{aligned}$ The boy's height is above the average height for boys	1C conversion 1A accuracy 2CA conclusion [Range 62 to 65] OR 1C conversion 1A accuracy 2CA conclusion [Range 157 to 165]	L3
		[33]	

QUESTION 3 [34 MARKS]			
Ques	Solution	Explanation	
3.1.1	Note: Afrikaans scripts to be marked differently		L3
	$\text { Annual salary }=\mathrm{R} 20416,67 \times 12=\mathrm{R} 245000,04 \mathrm{MA}$	1MA annual salary	
	Pension = R $245000,04 \times 6 \%=$ R $14700,00 \quad \checkmark \mathrm{CA}$	1CA pension	
	$\begin{aligned} & \text { Taxable amount without bonus } \\ & =\text { R } 245000,04-\text { R } 14700,00=\text { R } 230300,04^{\vee} \text { CA } \end{aligned}$	1CA subtracting the pension	
	$\begin{array}{lc} \text { Taxable annual income } & \checkmark \text { CA } \\ =\text { R230 } 300,04+\text { R20 } & 416,67 \end{array}=\text { R250 } 716,71$	1 CA taxable annual income	
	OR	OR	
	$\begin{aligned} & \text { Monthly pension }=\text { R20 } 416,67 \times 6 \%=\text { R1 } 2255^{\checkmark} \text { MA } \\ & \text { Monthly taxable salary } \\ & =\text { R20 } 416,67-\text { R1 225 } \\ & =\text { R19 191,67 } \checkmark \text { CA } \end{aligned}$	1MA pension 1CA subtracting the pension	
	$$	1MA annual salary 1 CA taxable annual income	
	Annual taxable income OR	OR	
	$=\left(\begin{array}{c} \checkmark \text { MA } \\ 20 \\ 416,67) \end{array}\right)-(12 \times \mathrm{R} 20 \mathrm{MA} 416,67 \times 6 \%)$	1MA multiplying by 13 1MA calculating the pension	
	$=\text { R } 265 \text { 416,71-R14 } 700 \checkmark \text { CA }$	1CA subtracting the pension	
	$=\mathrm{R} 250$ 716,71 $\checkmark \mathrm{CA}$	1 CA taxable annual income	
		[Pension omitted lose 2 marks] [Bonus omitted lose 1 mark]	
3.1.2		NB: Amount from Q3.1.1 1A for correct tax bracket 1SF for substituting into the formula	L3
		1S simplification	
		1CA for tax amount after rebate NPR	
		(5)	

Ques	Solution	Explanation	
3.1.3		1CA for tax value per month 1 M for subtracting both values 1CA net salary [CA only if a monthly salary is used] OR 1 M for subtracting both values 1CA annual salary 1CA monthly salary [dividing by 12]	L3
3.2.1	Amount if inflation rate was used for increase $\begin{aligned} & \checkmark \mathrm{A} \quad \checkmark \mathrm{M} \\ = & \mathrm{R} 44,8 \text { billion } \times 105,77 \% \\ = & \mathrm{R} 47,38496 \text { billion } \quad \checkmark \mathrm{CA} \end{aligned}$ $\checkmark \mathrm{M}$ This amount is less than the amount which was allocated, therefore her claim was valid. $\checkmark \mathrm{O}$ OR Amount if inflation rate was used for increase $\begin{array}{rl} & \checkmark \mathrm{A} \\ = & \checkmark \mathrm{M} \\ = & \mathrm{R} 44800 \\ = & 000 \\ = & 000 \times 105,77 \% \\ \hline 1060 & 000 \quad \checkmark \mathrm{CA} \end{array}$ \checkmark M This amount is less than the amount which was allocated, therefore her claim was valid. $\checkmark \mathrm{O}$	1A correct amount from table 1M percentage increase 1CA increased amount 1M comparing 10 stating that she is correct OR 1A correct amount from table 1M percentage increase 1CA increased amount 1M comparing 10 stating that she is correct OR	$\begin{aligned} & \text { L3(4) } \\ & \text { L4(1) } \end{aligned}$

Ques	Solution	Explanation	
$3.2 .1$ Cont.	$\begin{aligned} \text { Difference } & =\text { R47,9 billion }- \text { R44,8 billion } \checkmark \text { A } \\ & =\text { R3,1 billion } \checkmark \mathrm{M} \end{aligned}$ Percentage increase $\begin{aligned} & =\frac{\text { R3,1 billion }}{\text { R44,8billion }} \times 100 \% \checkmark \mathrm{MA} \\ & =6,919642857 \% \\ & \approx 6,9 \% \quad \checkmark \mathrm{CA} \end{aligned}$ Her claim is valid. $\quad \checkmark \mathrm{O}$ Note [Word billion must be there when subtracting and not for \%]	1A correct amount from table 1 M subtracting correct values 1MA calculating the percentage increase 1CA for rounding off 10 stating that she is correct	
3.2.2	Department of National Defence percentage growth from 2013/14 to $2014 / 15$ is $6,9 \% \checkmark$ CA South African national budget percentage growth from 2013/14 to 2014/15 $=\begin{aligned} & \begin{array}{c} \checkmark \mathrm{M} / \mathrm{A} \\ = \\ =8,69565174 \% \text { trillion }-\mathrm{R} 1,15 \text { trillion } \\ \mathrm{R} 1,15 \text { trillion } \end{array} \times 100 \% \quad \checkmark \mathrm{CA} \end{aligned}$ Dr Khoza’s statement is correct. ${ }^{\checkmark} \mathrm{O}$	* CA from Q3.2.1 1CA correct percentage 1M/A using correct values 1 M calculating growth 1CA calculating average \% 10 Stating that the increase is greater	$\begin{aligned} & \hline \text { L3(3) } \\ & \text { L4(2) } \end{aligned}$
3.2.3		1 M for increasing by $8,1 \%$ 1CA the amount 1 M for increasing by 5,9\% 1CA the amount OR 1 M for increasing by $8,1 \%$ 1CA the amount 1 M for increasing by $5,9 \%$ 1CA the amount NPR [Penalty 1 mark if billions omitted]	L3

Ques	Solution	Explanation	
3.2.4	Difference $=\mathrm{R} 48$ billion $-\mathrm{R} 47,9$ billion $=\mathrm{R} 0,1$ billion. In reality the difference is not 0,1 but an amount of R100 000000 (one hundred million) $\checkmark \mathrm{O}$ Example: R 47,9 billion rounded R48 billion implies that there will be an over allocation of R100 million $\checkmark \mathrm{O}$	10 for identifying the difference of 0,1 10 For knowing that 0,1 billion is 100000000 10 suitable example must be chosen	L4
3.3.1	A visual representation is more understandable (make sense of) for the general public than a table with values only. $\checkmark \checkmark$ O OR A visual representation is easier to read than text or table consisting of values. $\checkmark \checkmark \mathrm{O}$ OR The actual values are in billions and trillions which many people don't understand, where in these graphs percentages are used which are more understandable. $\checkmark \checkmark \mathrm{O}$	2 O reason	L4
3.3.2	\checkmark O A bar graph (multiple/compound) is more appropriate to display this data The bar graph will allow for a much more-in-depth analysis of the trends in the collection of tax between the different categories over a period of time. OR Line or broken line graph $\quad \checkmark \mathrm{O}$ The two lines will allow for a much more-in-depth analysis of the trends in the collection of tax between the different categories over a period of time.	10 identifying the type of graph 2 O for explaining the advantage of a bar graph OR 10 identifying the type of graph 2 O for explaining the advantage of a broken line graph	L4
		[34]	

QUESTION 4 [45 marks]			
Ques	Solution	Explanation	
4.1.1(a)		1A correct row number 1A seat number 1CA second seat number [15 and 16 two marks]	L2
4.1.1(b)	$\stackrel{\checkmark}{\mathrm{A}} \times \underset{24}{\times 2}=48 \text { A }$	1A 24 seats 1A total number of seats	L2
4.1.1(c)		* seats from Q 4.1.1 (b) 1MA adding the values 1RT cost zone A and B 1RT cost for zone C and D 1RT cost for zone E and F 1S simplification 1CA answer [One mark for every 2 zones]	L3
4.1.2(a)	$\begin{aligned} \text { Cost for } 1 \text { zone B ticket } & =48 \text { OR } \checkmark \mathrm{A} \\ & =\mathrm{R} 27,2183 \times 48 \\ & =\mathrm{R} 1306,48 \quad \checkmark \mathrm{C} \end{aligned}$ Cost in Euro for one flight ticket $=492,29$ $\begin{aligned} \text { Cost in OR for one flight ticket }= & \frac{492,29}{1,87126} \quad \checkmark \mathrm{M} \\ & =263,08 \end{aligned}$ $\begin{aligned} \text { Cost in Rand for one flight ticket } & =263,08 \times \mathrm{R} 27,2183 \checkmark \mathrm{M} \\ & =7160,59 \quad \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Total cost per person } & =\text { R } 1306,48+\mathrm{R} 7160,59 \\ & =\text { R } 8467,07 \quad \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Total cost for two } & =\text { R } 8467,07 \times 2 \\ & =\text { R } 16934,14 \quad \checkmark \mathrm{CA} \end{aligned}$	1A cost of ticket 1C convert OR to Rand 1M convert Euro to OR 1M convert OR to Rand 1CA cost of one ticket 1CA calculating total cost per person 1CA calculating total cost for two people OR	L4

Ques	Solution	Explanation	
$\begin{aligned} & \text { 4.1.2(a) } \\ & \text { (cont.) } \end{aligned}$	OR \checkmark A Cost for Zone B tickets: 2×48 OR $=96$ OR $\checkmark \mathrm{A}$ $\begin{aligned} \text { Flight tickets in OR } & =\frac{2 \times 492,29}{1,87126} \checkmark \mathrm{C} \\ & =526,1588448 \checkmark \mathrm{CA} \end{aligned}$ Total cost: $526,1588448+96=622,1588448 \checkmark$ CA $\begin{aligned} \text { Cost in Rand } & =622,1588448 \times 27,2183 \checkmark \mathrm{C} \\ & =16934,11 \checkmark \mathrm{CA} \end{aligned}$	1A cost for one ticket 1C conversion 1A 2 flight tickets 2M convert Euro to rand 1CA cost of 2 tickets in rand 1CA total cost OR 1A cost for one ticket 1A cost of 2 tickets 1C conversion to OR 1CA ticket price 1CA total cost 1C convert OR to Rand 1CA cost in rand	
4.1.2(b)	Time leaving Johannesburg + flight time $=20 \mathrm{~h} 30+11 \mathrm{~h} 25=31 \mathrm{~h} 55 \quad \checkmark \mathrm{~A}$ Time in South Africa when they arrived: 07:55 or 7.55 am or five minutes to eight in the morning	1 A adding 1CA correct time [If written as 07 h 55 one mark only] Answer only full marks	L2
4.2.1	South westerly (SW) $\quad \checkmark \checkmark$ A OR South, south westerly (SSW)	2A correct direction	L2

Ques	Solution	Explanation	
4.2.2	This chart only shows distances from Muscat. OR $\checkmark \checkmark \mathrm{O}$ They don't lie in the same direction. $\checkmark \checkmark \mathrm{O}$ This is not a map $/ \mathrm{strip}$ chart. OR	20 opinion	L4
4.2.3	$\begin{aligned} \text { Muscat to Sydney } & \approx 3349 \mathrm{~km} \times 3,5 \mathrm{RT} \checkmark \mathrm{M} \\ & \approx 10716,8 \text { to } 11721,5 \mathrm{~km} \quad \checkmark \mathrm{CA} \end{aligned}$	1RT correct value 1M multiplication by 3349 1CA correct distance [Range of values 3,2 to 3,5] [3 or 4 then max 2 marks]	L2
4.3.1	$\begin{aligned} \text { TSA } & =\mathrm{P} \times \mathrm{H}+\mathrm{K} \\ & =8 \times 110 \mathrm{~A} \\ & =220000 \mathrm{~mm}^{2}+58425 \mathrm{~mm}+58423 \mathrm{~mm}^{2} \\ & =278423 \mathrm{~mm}^{2} \\ & =0,278423 \mathrm{~s}^{2} \quad \checkmark \mathrm{C} \end{aligned}$ For $0,07 \mathrm{~m}^{2}$ one needs $100 \mathrm{~m} \ell$ of paint $\begin{array}{r} \therefore 1 \mathrm{~m}^{2} \text { one need } \frac{100}{0,07} \mathrm{~m} \ell^{\checkmark \mathrm{M}} \\ =1428,57 \mathrm{~m} \ell \end{array}$ $\begin{aligned} \therefore 0,278423 \mathrm{~m}^{2} \text { need } & =1428,571429 \times 0,278423 \\ & =397,7471429 \mathrm{~m} \ell \\ & \approx 397,75 \mathrm{~m} \ell \\ \text { Two coats } & =2 \times 397,75 \mathrm{~m} \ell \\ & =795,49 \mathrm{~m} \ell \\ & \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Number of spray cans } & =\frac{795,49 \mathrm{~m} \ell}{250 \mathrm{~m} \ell} \\ & =3,18184 \\ & \approx 4 \quad \checkmark \mathrm{CA} \end{aligned}$	1A total area of panels 1SF substitution in formula 1S simplification 1C conversion to m^{2} 1M Method 1CA paint needed for 1 coat 1CA paint needed for 2 coats 1CA rounding up	L4

Ques	Solution	Explanation	
$\begin{aligned} & \text { 4.3.1 } \\ & \text { cont. } \end{aligned}$	OR $\begin{aligned} \text { TSA } & =\mathrm{P} \times \mathrm{H}+\mathrm{K} \\ & =8 \times \vee \mathrm{A} \quad \checkmark \mathrm{SF} \\ & =8 \times 0,11 \mathrm{~mm} \times 250 \mathrm{~mm}+0,058423 \mathrm{~m}^{2} \\ & =0,22 \mathrm{~m}^{2}+0,058423+0,05423 \mathrm{~m}^{2} \quad \checkmark \mathrm{C} \\ & =0,278423 \mathrm{~m}^{2} \quad \checkmark \mathrm{~S} \end{aligned}$ 100 ml covers $0,07 \mathrm{~m}^{2}$ $\therefore 0,28 \mathrm{~m}^{2}$ will need $=\frac{100 \times 0,278423}{0,07} \mathrm{~m} \ell \quad \checkmark \mathrm{M}$ $=397,7471429 \mathrm{~m} \ell$ $=397,75 \mathrm{~m} \mathrm{\ell} \quad \checkmark \mathrm{CA}$ Two coats $=2 \times 397,75 \mathrm{~m} \ell=795$, $49 \mathrm{~m} \ell \quad \checkmark \mathrm{CA}$ Number of spray cans $=\frac{795,49 \mathrm{~m} \ell}{250 \mathrm{~m} \ell}=3,181 \approx 4 \quad \checkmark \mathrm{CA}$	OR 1A total area of panels 1SF substitution in formula 1C conversion to m^{2} 1S simplification 1M method 1CA paint needed for 1 coat 1CA paint needed for 2 coats 1CA rounding up	
4.3.2	$$ \therefore The height of the actual tower is approximately $39,4 \mathrm{~m}$ OR Height $=25 \mathrm{~cm}-1 \mathrm{~cm}=24 \mathrm{~cm}=0,24 \stackrel{\checkmark}{\mathrm{C}} \mathrm{m}$ Actual height $=0,24 \times 164=39,36 \mathrm{~m} \checkmark \mathrm{CA}$	1MA correct height 1CA correct answer in mm 1C conversion OR 1MA correct height 1C conversion 1CA correct answer in m NPR	L2
4.4	1. Mount the vertical poles to the kick base and fasten with the screws. $\checkmark \mathrm{A}$ 2. Slide the three glass panels into the vertical poles. 3. Place the top aluminium frame on top and fasten with screws. $\checkmark \mathrm{A}$ framing and insert the brackets. $\checkmark \mathrm{A}$	1A for the vertical poles 1A for the screws 1A glass panels 1A for the top frame 1A Screws 1A interior standards 1A brackets [Single word answers not acceptable.]	L2
		[45]	

TOTAL: 150

[^0]: * This question must not be marked in Limpopo. The paper will be marked out of 143 and scaled and then the candidates' total mark will be up-scaled to 150 marks

[^1]: * This question must not be marked in Limpopo. The paper will be marked out of 143 and scaled and then the candidates' total mark will be up-scaled to $\mathbf{1 5 0}$ marks

