MARKS: 150

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Method</td>
</tr>
<tr>
<td>M/A</td>
<td>Method with accuracy</td>
</tr>
<tr>
<td>CA</td>
<td>Consistent accuracy</td>
</tr>
<tr>
<td>A</td>
<td>Accuracy</td>
</tr>
<tr>
<td>C</td>
<td>Conversion</td>
</tr>
<tr>
<td>S</td>
<td>Simplification</td>
</tr>
<tr>
<td>RT/RG</td>
<td>Reading from a table/Reading from a graph</td>
</tr>
<tr>
<td>SF</td>
<td>Correct substitution in a formula</td>
</tr>
<tr>
<td>O</td>
<td>Opinion/Example</td>
</tr>
<tr>
<td>P</td>
<td>Penalty, e.g. for no units, incorrect rounding off, etc.</td>
</tr>
<tr>
<td>R</td>
<td>Rounding off</td>
</tr>
<tr>
<td>J</td>
<td>Justification</td>
</tr>
</tbody>
</table>

PLEASE NOTE:
1. If a candidate deletes a solution to a question without providing another solution, then the deleted solution must be marked.
2. If a candidate provides more than one solution to a question, then only the first solution must be marked and a line drawn through any other solutions to the question.

This memorandum consists of 19 pages.
QUESTION 1 [26 MARKS]

<table>
<thead>
<tr>
<th>Ques</th>
<th>Solution</th>
<th>Explanation</th>
<th>AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1</td>
<td>South-westerly ✓ ✓ A</td>
<td>2A correct direction</td>
<td>12.3.4 L3</td>
</tr>
<tr>
<td></td>
<td>(accept abbreviations for compass directions)</td>
<td>1A Southerly</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>1A Westerly</td>
<td>1A N12 and Beaufort West</td>
<td>(4)</td>
</tr>
<tr>
<td>1.1.2</td>
<td>N5 OR N17 ✓ ✓ A</td>
<td>2A correct national road</td>
<td>12.3.4 L3</td>
</tr>
<tr>
<td></td>
<td>N17 accepted due to unclear provincial boundaries</td>
<td>1A N1</td>
<td>(4)</td>
</tr>
<tr>
<td>1.1.3</td>
<td>One possible route: ✓ A</td>
<td>1A N1</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>From Bloemfontein turn onto the N1 and travel south until Beaufort West. Then turn onto the N12 until George. ✓ A</td>
<td>1A N12 and Beaufort West</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>A second possible route: ✓ A</td>
<td>OR 1A N1</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>From Bloemfontein turn onto the N1 and travel south until the intersection with the N9. Then follow the N9 until George. ✓ A</td>
<td>1A N9</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>A third possible route: ✓ A</td>
<td>OR 1A N1</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>From Bloemfontein turn onto the N1 and travel south until the intersection with N10. Then follow the N10 in a south easterly direction until the N2. Then follow the N2 in a westerly direction until George. ✓ A</td>
<td>1A N10, N2</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>A fourth possible route: ✓ A</td>
<td>OR 1A (N1) N6 and East London, N1</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>From Bloemfontein turn onto the N1 and later turn onto the N6 to East London. Then follow the N2 in a westerly direction until George. ✓ A</td>
<td>1A N2</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>A fifth possible route: ✓ A</td>
<td>OR 1A N1; N5 and</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>From Bloemfontein turn north onto the N1, turn right unto N5, take a right unto N3 pass Pietermaritzburg to Durban. Then at Durban turn south unto the N2, pass East London, Port Elizabeth and continue until George. ✓ A</td>
<td>1A N3 Durban; N2</td>
<td>(4)</td>
</tr>
</tbody>
</table>

NOTE: Follow the learners route. But leaners cannot go back to Kimberley (No N8 route).
<table>
<thead>
<tr>
<th>Ques</th>
<th>Solution</th>
<th>Explanation</th>
<th>AS</th>
</tr>
</thead>
</table>
| 1.2.1 | Total amount for accommodation = R\,1\,050 \times 6 \,✓\,A
 = R\,6\,300 \,✓\,CA
 OR (due to language interpretation)
 Total amount for accommodation = R\,1\,050 \times 7 \,✓\,A
 = R\,7\,350 \,✓\,CA | 1A rate \times 6
 1CA simplification | 12.1.3
 L2 |
| 1.2.2 | (a) Total cost (in rand) = (60 \times 4 \times \text{number of breakfasts}) \,✓\,M
 + (90 \times 4 \times \text{number of lunches}) \,✓\,M
 + (120 \times 4 \times \text{number of suppers}) \,✓\,M | 1M adding
 1M multiplying \times 4 \text{ or number of people}
 1M costs in terms of meals
 1M variables explained | 12.2.3
 L3 |
| | OR Total cost (in rand) = (60 \times x + 90 \times y + 120 \times z) \times 4
 Where x = \text{number of breakfasts} \,✓\,M
 y = \text{number of lunches} \,✓\,M
 and z = \text{number of suppers} \,✓\,M | 1M adding
 1M costs in terms of meals
 1M variable explained | |
| | OR Total cost (in rand) = (\text{number of days} \times n \times 60) \,✓\,M
 + (\text{number of days} \times n \times 90) \,✓\,M
 + (\text{number of days} \times n \times 120) \,✓\,M
 Where n = \text{number of people} \,✓\,M | 1M adding
 1M costs in terms of days
 1M variable explained | |
| | OR Total cost (in rand) = (Sat + Sun + Mon + Tues + Wed + Thurs + Fri) cost
 = 120n + 270n + 180n + 210n + 270n + 150n + 60n)
 = 1\,260\,n \,✓\,M
 Where n = \text{number of people} \,✓\,M | 1M adding
 1M costs in terms of days
 1M variable explained | |
| | OR Total cost (in rand) = (60 \times 4 \times \$) + (90 \times 4 \times 4) + (120 \times \$ \times 4 \times 5)
 = 1\,200 + 1\,440 + 2\,400 \,✓\,CA
 = 5\,040 \,✓\,CA | 1S correct substitution of number of people
 1S correct substitution of number of meals
 1CA simplification
 1CA total | 12.2.3
 L3 |
<table>
<thead>
<tr>
<th>Ques</th>
<th>Solution</th>
<th>Explanation</th>
<th>AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR</td>
<td>Total cost (in rand)</td>
<td>$= (60 \times x + 90 \times y + 120 \times z) \times 4$</td>
<td>1S correct subst. no. of people</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$= (60 \times 5 + 90 \times 4 + 120 \times 5) \times 4$</td>
<td>1S correct subst. no. of meals</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$= 1260 \times 4 \checkmark CA$</td>
<td>1CA simplification</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$= 5040 \checkmark CA$</td>
<td>1CA total</td>
</tr>
<tr>
<td>OR</td>
<td>(using equation from 1.2.2 (a) working with daily cost)</td>
<td>Total cost (in rand) $= 1260 \times 4 \checkmark S \checkmark S$</td>
<td>2S substitution of no. of people</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$= 5040 \checkmark CA \checkmark CA$</td>
<td>2CA total</td>
</tr>
<tr>
<td>OR (calculating total daily costs)</td>
<td>Cost of meals:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Saturday = R120 $\times 4$ = R480</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sunday = (R60 + R90 + R120) $\times 4$ = R1080</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monday = (R60 + R120) $\times 4$ = R720</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tuesday = (R90 + R120) $\times 4$ = R840</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wednesday = (R60 + R90 + R120) $\times 4$ = R1080</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thursday = (R60 + R90) $\times 4$ = R600</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Friday = R60 $\times 4$ = R240</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total cost (in rand) $= 480 + 1080 + 720 + 840 + 1080 + 600 + 240 \checkmark CA$</td>
<td>1CA simplification</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$= 5040 \checkmark CA$</td>
<td>1CA total</td>
<td></td>
</tr>
<tr>
<td>OR (calculating total cost of types of meals)</td>
<td>Total cost of breakfast $= R60 \times 5 \times 4 = R1200 \checkmark S$</td>
<td>2S correct subst. meal cost</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total cost of lunches $= R90 \times 4 \times 4 = R1440 \checkmark S$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total cost of suppers $= R120 \times 5 \times 4 = R2400$</td>
<td>1CA simplification</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total cost (in rand) $= 1200 + 1440 + 2400 \checkmark CA$</td>
<td>1CA total</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$= 5040 \checkmark CA$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(4)
<table>
<thead>
<tr>
<th>Ques</th>
<th>Solution</th>
<th>Explanation</th>
<th>AS</th>
</tr>
</thead>
</table>
| 1.2.3 | Cost for nature walk = (R120 × 2) + (R100 × 2) \(\checkmark\) M/A
= R440 \(\checkmark\) CA
Cost for game park = R200 × 4
= R800 \(\checkmark\) A
Cost for boat cruise = (R200 × 2) + (R150 × 2) \(\checkmark\) M/A
= R700 \(\checkmark\) CA
Total entertainment cost = R440 + R800 + R700 + R2 000
= R3 940 \(\checkmark\) CA | 1M/A expression for cost
1CA simplification | 12.1.3 L4 |
| **Six day option:** | | | |
| | Total cost for the trip (accom. + meals + long dist. + local + ent)
= R6 300 + R5 040 + R1 602,86 + R513,60 + R3 940
= R17 396,46 \(\checkmark\) CA | 1M/A adding all costs
1CA total cost | |
| **OR** | | | |
| | **Seven day option:** | | |
| | Total cost for the trip (accom. + meals + long dist. + local + ent)
= R7 350 + R5 040 + R1 602,86 + R513,60 + R3 940
= R18 446,46 \(\checkmark\) CA | 1M/A adding all costs
1CA total cost | |
| | \(\therefore\) Mr Nel's estimate was **CORRECT** \(\checkmark\) J | 1J verification | (9) [26] |
QUESTION 2 [34 MARKS]

<table>
<thead>
<tr>
<th>Ques</th>
<th>Solution</th>
<th>Explanation</th>
<th>AS</th>
</tr>
</thead>
</table>
| 2.1.1(a) | A – 15 = 37 ✓M
A = 52 ✓A
OR
A = 37 + 15 ✓M
= 52 ✓A | 1M concept of range
1A simplification
Correct answer only– full marks | 12.4.3
L3 |
| | | (2) | |
| 2.1.1(b) | The mean for 16 customers is 34 minutes
∴ total waiting time = 16 × 34 = 544 ✓M
Total of known waiting times
= 30 + 15 + 45 + 36 + 40 + 34 + 42 + 26 + 32 + 38 + 35 + 41 + 28
= 494 ✓M
Difference is 544 – 494 = 50 ✓| 1M total waiting time
1M total of known times
1S difference of the totals
1CA value of B
OR | 12.4.3
L3 |
| |
∴ B = \(\frac{50}{2} \) = 25 ✓CA
OR
Mean ✓M
= \(\frac{30 + 15 + 45 + 36 + 52 + 40 + 34 + 42 + 26 + 32 + 38 + 35 + 41 + 28}{16} \) ✓M
= 34
\(\frac{494 + 2B}{16} \) = 34
\(2B = (34 \times 16) – 494 \) ✓S
\(B = \frac{(34 \times 16) – 494}{2} \) ✓S
∴ B = 25 ✓CA
\(\frac{34 + 35}{2} \) ✓M
= 34.5 ✓CA | 1S simplification
1CA value of B
Correct answer only - full marks | |
| | (Using A and B values calculated above)
1M/A arranging 16 terms in ascending order
1M median concept (even number of terms)
1CA simplification | 12.4.3
L3 | |
| 2.1.1(c) | Waiting times are: ✓M/A
15, 25, 25, 26, 28; 30; 32; 34; 35; 36; 38; 40; 41; 42; 45; 52
Median = \(\frac{34 + 35}{2} \) ✓M
= 34.5 ✓CA | (Using A and B values calculated above)
1M/A arranging 16 terms in ascending order
1M median concept (even number of terms)
1CA simplification | 12.4.3
L3 |
<table>
<thead>
<tr>
<th>Ques</th>
<th>Solution</th>
<th>Explanation</th>
<th>AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.2</td>
<td>4 ✓✓CA</td>
<td>2CA correct number</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note if B is greater than 27 answer can be 2</td>
<td>(2)</td>
</tr>
<tr>
<td>2.1.3</td>
<td>The mean, median and range for 7 February are less than those for 14 February. ✓O</td>
<td>2O comparing the measures</td>
<td>12.4.4</td>
</tr>
<tr>
<td></td>
<td>This means that his customers had to wait for a shorter time on 7 February than on 14 February. ✓O</td>
<td>Accept a comparison table of correct values</td>
<td>L4</td>
</tr>
<tr>
<td></td>
<td>Any two of the reasons below:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• It could be that more people came to eat at his eating place on 14 February, because of Valentine's Day. ✓J</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• He had less staff on the 14th, ✓J</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• He had the same number of staff but did not anticipate the increased number of customers. ✓J</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• His equipment was faulty on the 14th – people had to wait longer to be served ✓J</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The electricity was off for a while ✓J</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The mean, median and range for 14 February are more than those for 7 February. ✓O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This means that his customers had to wait for a longer time on 14 February than on 7 February. ✓O</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any two of the reasons below:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• It could be that less people came to eat at his eating place on 7 February, because of Valentine's Day. ✓J</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• He had more staff on the 7th, ✓J</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• He had the same number of staff but did not anticipate the difference in number of customers. ✓J</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• His equipment was working well on the 7th – people did not wait long to be served ✓J</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• No electricity problems on the 7th ✓J</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any other valid, well thought out reason will be accepted</td>
<td></td>
<td>(4)</td>
</tr>
<tr>
<td>Ques</td>
<td>Solution</td>
<td>Explanation</td>
<td>AS</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Percentage ordering chicken = 15% ✓A</td>
<td>1A percentage ordering chicken</td>
<td>12.1.1</td>
</tr>
<tr>
<td></td>
<td>If 20% of the total = 40</td>
<td>1M finding 1%</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>∴ 1% of the total = (\frac{40}{20}) = 2 ✓M</td>
<td>1A multiplying by 15</td>
<td>L2</td>
</tr>
<tr>
<td></td>
<td>∴ 15% of the total = 15 × 2 ✓A</td>
<td>1CA simplification</td>
<td>L3</td>
</tr>
<tr>
<td></td>
<td>= 30 ✓CA</td>
<td></td>
<td>(2)</td>
</tr>
<tr>
<td>OR</td>
<td>20% : 40 = 15% : x ✓A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x = \frac{15%}{20%} \times 40) ✓S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>= 30 ✓CA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>20% of total = 40</td>
<td>1M using proportion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total = (\frac{40}{20%}) ✓M</td>
<td>1A percentage ordering chicken</td>
<td></td>
</tr>
<tr>
<td></td>
<td>= 200 ✓A</td>
<td>1S expression for x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>∴ 15% of 200 = 30</td>
<td>1CA simplification</td>
<td></td>
</tr>
<tr>
<td>2.2.2</td>
<td>(\sqrt{M} \quad \sqrt{A}) OR 0.75 OR (\frac{3}{4})</td>
<td>1M subtracting from 100 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Percentage not ordering lamb = 10 + 15 + 20 + 30 = 75✓M</td>
<td>1A simplification</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\sqrt{A}) OR 0.75 OR (\frac{3}{4})</td>
<td>1M adding percentages</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>Number of people not ordering lamb ✓M</td>
<td>1A simplification</td>
<td></td>
</tr>
<tr>
<td></td>
<td>= 20 + 30 + 40 + 60 = 150</td>
<td>1M adding actual numbers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(P(\text{not lamb}) = \frac{150}{200} = \frac{3}{4}) OR 0.75 OR 75% ✓A</td>
<td>1A simplification</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Correct answer only - Full marks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2)</td>
</tr>
</tbody>
</table>
2.3.1 Two of the following possible reasons:

- To protect the base of the drum from burning.
- To bring the fire closer to the grid.
- To spread the coals evenly. (Perfect the braaing)
- To use less coal.
- To stabilise the drum.
- To retain the heat of the burning coals.
- The sand can be used to put out the fire.

Accept any two valid reasons. ✓✓O ✓✓O

2O reason
2O reason

(4)

2.3.2 Volume of the braai drum = 108 ℓ

= \(108 \times 1000000 \text{ mm}^3\)

= \(108,000,000 \text{ mm}^3\) ✓C

Radius of the braai drum = \(\frac{572 \text{ mm}}{2}\) = 286 mm ✓A

✓M

Volume of the braai drum = \(\frac{1}{2} \times \pi \times (\text{radius})^2 \times (\text{height})\)

\(108,000,000 \text{ mm}^3 = \frac{1}{2} \times 3,14 \times (286 \text{ mm})^2 \times (\text{height})\)

\(\text{Height} = \frac{2 \times 108,000,000 \text{ mm}^3}{3,14 \times (286 \text{ mm})^2}\) ✓M

\(= 840,99 \text{ mm} \) CA (840,56... mm using \(\pi\))

\(\approx 841 \text{ mm}\)

But length of grid = 1% more than height of drum

1% of 840,99 mm = 8,4099 ✓M

\(\therefore \text{Length of grid} = 840,99 \text{ mm} + 8,4099 = 849,41 \text{ mm}\)

OR

\(\therefore \text{Length of grid} = 101\% \text{ of } 840,99 \text{ mm} = 849,40 \text{ mm} \) CA

No penalty if answer is rounded to 850 mm

12.3.1
L4

1C volume in mm\(^3\)

1A value of radius

1M using \(\frac{1}{2}\) cylinder

1SF substitution into formula

1M Finding expression for height

1CA for height only

1M calculation percentage

1M increasing by 1%

1CA length of grid

OR

1M increasing by 1%

1M calculation percentage

1CA length of grid

No penalty if answer is rounded to 850 mm

(9)
QUESTION 3 [26 MARKS]

<table>
<thead>
<tr>
<th>Ques</th>
<th>Solution</th>
<th>Explanation</th>
<th>AS</th>
</tr>
</thead>
</table>
| 3.1.1 | Number of R2,00 tickets per seller = \(\frac{3500}{\text{number of sellers}} \) \(\checkmark \text{A} \)
OR
Number of R2,00 ticket per seller = \(\frac{7000}{2 \times \text{number of sellers}} \) \(\checkmark \text{A} \)
OR
Number of R2,00 tickets per seller = \(\frac{7000}{2n} = \frac{3500}{n} \)
where \(n = \text{number of sellers} \) |
1A using 3 500
1A dividing by number of sellers
OR
1A using 7 000 \(\div 2 \)
1A dividing by number of sellers
(2) |
| 3.1.2 | (a) Indirect/Inverse proportion \(\checkmark \text{A} \)
(b) \(P = \frac{3500}{250} \) \(\checkmark \text{A} \)
\(= 14 \) \(\checkmark \text{CA} \)
\(Q = \frac{3500}{125} = 28 \) \(\checkmark \text{CA} \)
\(P : 70 = 50 : 250 \) \(\checkmark \text{A} \)
\(= 50 \times \frac{70}{250} = 14 \) \(\checkmark \text{CA} \) |
1A correct type of proportion
two answers zero marks
1A finding the number of tickets
1M dividing by 250
1CA correct value of \(P \)
1CA correct value of \(Q \)
Correct answer only - Full marks
(4) |
3.1.2 (c)

SALE OF RAFFLE TICKETS

<table>
<thead>
<tr>
<th>Number of tickets sold by each seller</th>
<th>Number of ticket sellers</th>
</tr>
</thead>
<tbody>
<tr>
<td>280</td>
<td>0</td>
</tr>
<tr>
<td>240</td>
<td>40</td>
</tr>
<tr>
<td>200</td>
<td>80</td>
</tr>
<tr>
<td>160</td>
<td>120</td>
</tr>
<tr>
<td>120</td>
<td>160</td>
</tr>
<tr>
<td>80</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

- A correct plotting of point (20;175)
- A correct plotting of point (140;25)
- One other point plotted correctly
- CA joining the plotted points by a "smooth" curve (section from 20 ticket sellers to 100 ticket sellers)

3.2.1

- Fewer tickets have to be sold. ✓ ✓ J
- OR To reduce the number of sellers. ✓ ✓ J
- OR To raise the money faster (in a shorter time) ✓ ✓ J
- OR To raise more money/to buy more computers ✓ ✓ J

3.2.2

- Fewer people can afford (too expensive) to buy the R5,00 tickets. ✓ ✓ J
- OR Some of the sellers might not be able to sell all their tickets

12.1.2

- Fewer tickets have to be sold.
- OR To reduce the number of sellers.
- OR To raise the money faster (in a shorter time)
- OR To raise more money/to buy more computers

12.2.2

- Less tickets have to be sold.
- OR To reduce the number of sellers.
- OR To raise the money faster (in a shorter time)
- OR To raise more money/to buy more computers

12.1.2

- Fewer tickets have to be sold.
- OR To reduce the number of sellers.
- OR To raise the money faster (in a shorter time)
- OR To raise more money/to buy more computers
3.2.3

Number of tickets to be sold = \(\frac{R\,7\,000,000}{R\,5} \) \(\checkmark \) M
= 1\,400 \(\checkmark \) A

Number of tickets per person = \(\frac{1\,400}{\text{number of sellers}} \) \(\checkmark \) CA

1M dividing by R5

1A number of tickets to be sold

1CA formula

OR

Showing values in a table/co-ordinates - 3 marks

The possible points learners can use: (other point values can be used)

<table>
<thead>
<tr>
<th>10</th>
<th>20</th>
<th>35</th>
<th>50</th>
<th>100</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>70</td>
<td>40</td>
<td>28</td>
<td>14</td>
<td>10</td>
</tr>
</tbody>
</table>

SALE OF RAFFLE TICKETS

4CA any 4 points plotted correctly
1CA joining the plotted points by a smooth curve
<table>
<thead>
<tr>
<th>Ques</th>
<th>Solution</th>
<th>Explanation</th>
<th>AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.4</td>
<td>At R2 per ticket 50 tickets must be sold</td>
<td>1RG reading from graph</td>
<td>12.1.1</td>
</tr>
<tr>
<td></td>
<td>At R5 per ticket 20 tickets must be sold</td>
<td>1RG reading from graph</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>Difference = 50 – 20</td>
<td>1 CA difference in number of tickets</td>
<td>12.2.3</td>
</tr>
<tr>
<td></td>
<td>= 30 tickets √CA</td>
<td></td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
<td>L3</td>
</tr>
</tbody>
</table>
| | Number of R2,00 tickets per person = \[
| | \frac{3500}{70}
| | = 50 √M | 1M calculating the number of R2,00 tickets | |
| | Number of R5,00 tickets per person = \[
| | \frac{1400}{70}
| | = 20 √M | 1M calculating the number of R5,00 tickets | |
| | Difference = 50 – 20 | 1CA difference in number of tickets | |
| | = 30 tickets √CA | | |
| | **Answer only – Full marks** | Accept values from 29 to 32. (refer to candidate's graph) | (3) |

[26]
QUESTION 4 [27 MARKS]

<table>
<thead>
<tr>
<th>Ques</th>
<th>Solution</th>
<th>Explanation</th>
<th>AS</th>
</tr>
</thead>
</table>
| 4.1.1 | Avro ✓A
It is the only one that can take MORE than 37 passengers (himself plus 37 others) | 1A correct aircraft
2J justification | 12.4.4 L4 |
| 4.1.2 | Scale is 9,9 cm to 19,25 m ✓M ✓C
or 9,9 cm to 1 925 cm OR 0,099 m : 19,25 m
Scale = 1 : \(\frac{1925}{9,9} \) ✓CA
OR 1 : \(\frac{19,25}{0,099} \) CA | 1M scale concept
1C converting to the same unit
1CA dividing to bring to a unit ratio
1CA rounding off | 12.3.2 (1)
12.3.3 (3) L3 |
| 4.1.3 | Maximum Operating Altitude = 25 000 feet ✓RT
= \(\frac{25 000}{6 076} \) nautical miles
= 4,1145… nautical miles
≈ 4 nautical miles ✓CA | 1RT reading from the table
1M dividing by 6076 ft
1CA nearest nautical mile | 12.3.2 L3 |
| 4.1.4 | Distance = average cruising speed \(\times \) time
510 km = average cruising speed \(\times \) 39 minutes ✓SF
Average cruising speed = \(\frac{510 \text{ km}}{39 \text{ minutes}} \)
= \(\frac{510 \text{ km}}{0,65 \text{ h}} \) ✓C
= 784,62 km/h ✓CA
Ms Bobe was travelling in the SUKHOI ✓J
OR
Distance (Jetstream) = (500 \(\times \) \(\frac{39}{60} \)) km = 325 km ✓SF
Distance (Sukhoi) = (800 \(\times \) \(\frac{39}{60} \)) km = 520 km ✓CA
Distance (Avro) = (780 \(\times \) \(\frac{39}{60} \)) km = 507 km ✓J
Ms Bobe was travelling in the SUKHOI | 1SF substitution
1C converting to hours
1CA average speed
1J identification of Aircraft
1SF substitution
1C converting to hours
1CA distance travel
1J identification of Aircraft | 12.2.1 L3 (2)
12.2.1 L4 (2) |

Copyright reserved
Ques 4.1.4 (cont)

OR

Comparing time

Time = \(\frac{\text{distance}}{\text{speed}} \)

- Time (Jetstream) = \(\frac{510}{500} \) h = 1,02 hours = 61,2 minutes
- Time (Sukhoi) = \(\frac{510}{800} \) h = 0,6375 hours = 38,25 minutes
- Time (Avro) = \(\frac{510}{780} \) h = 0,6538... hours = 39,23 minutes

Ms Bobe was travelling in the **SUKHOI** ✓J

Ques 4.1.5

Solution

Fuel capacity (in litres) = \(\frac{\text{fuel capacity (in kg)}}{820} \)

- Fuel capacity (in litres) = \(\frac{9362 \text{ kg}}{820} \) ✓SF
- Fuel capacity (in litres) = \(\frac{9362000 \text{ g}}{820} \) ✓C
- Fuel capacity (in litres) ≈ 11417

OR

Fuel capacity (in litres) = \(\frac{\text{fuel capacity (in kg)}}{820} \)

- Fuel capacity (in litres) = \(\frac{9362 \text{ kg}}{820} \) ✓SF
- Fuel capacity (in litres) = \(\frac{9362 \text{ kg}}{0,820 \text{ kg}} \) ✓C
- Fuel capacity (in litres) ≈ 11417

Ques 4.2.1

<table>
<thead>
<tr>
<th>Route</th>
<th>Ques</th>
<th>Solution</th>
<th>AS</th>
<th>Ques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johannesburg to Polokwane: SA 8809</td>
<td>✅✅</td>
<td>✅A</td>
<td></td>
<td>12.4.4</td>
</tr>
<tr>
<td>Polokwane to Johannesburg: SA 8816</td>
<td>✅A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.2.2(a)

Solution

1A drawing the horizontal line at 4
1A plotting (Saturday; 2)
1A plotting (Sunday; 3)
1CA joining the plotted points

AS

12.4.2
L3

4.2.2 (b) Saturday ✓ A

Not many people travel on Saturday, as most business meetings are scheduled during the week. ✓✓ O

OR

If people go away for the weekend on holiday, they travel there on a Friday and travel back on Sunday. ✓✓ O

OR

Possible religious reason ✓✓ O

OR

Any other valid reason ✓✓ O

AS

12.4.4
L4

O own opinion based on candidates graph

Copyright reserved
QUESTION 5 [37 MARKS]

<table>
<thead>
<tr>
<th>Ques</th>
<th>Solution</th>
<th>Explanation</th>
<th>AS</th>
</tr>
</thead>
</table>
| 5.1.1 | For 30 items:
\[\text{Cost} = R5\,000 \,\checkmark\, \text{RG} \]
\[\text{Income} = R3\,600 \,\checkmark\, \text{RG} \]
\[\text{Loss} = R5\,000 - R3\,600 = R1\,400 \]
\[\therefore 30 \text{ items} \,\checkmark\, \text{A} \] | 1RG cost
1RG income
1A number of items
Correct answer only - full marks | 12.2.2 L3 |
| 5.1.2 | Cost of 40 items = R5\,500 \checkmark\, \text{RG} OR \[40 \times R50,00 + R3\,500 \]
Income from 40 items = R137,50 \times 40 \checkmark\, \text{M}
\[= R5\,500 \,\checkmark\, \text{A} \]
At 40 items, Cost = Income
\[\therefore \text{Mr Stanford's statement is CORRECT}. \,\checkmark\, \text{CA} \] | 1RG/A cost Or
Cost = income
1M finding total income
1Asimplification
1CA verification | 12.2.2 L4 |
| 5.2.1 | \(N \) is the total sales.
16% of \(N = 800 \checkmark\, \text{M} \)
\[N = 800 \times \frac{100 \checkmark\, \text{M}}{16} \]
\[= 5\,000 \,\checkmark\, \text{A} \] | 1M concept
1M finding an
expression for \(N \)
1A total sales
OR
1M finding unit value
1M finding 100%
1A total sales
OR
1M concept
1M finding an
expression for \(N \)
1A total sales
\(K = \frac{750 \times 100 \checkmark\, \text{M}}{5\,000} \)
\[= 15 \,\checkmark\, \text{CA} \] | 12.1.1 L2 (4)
12.2.1 L3 (3) |
<table>
<thead>
<tr>
<th>Ques</th>
<th>Solution</th>
<th>Explanation</th>
<th>AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>L = 17% of total sales</td>
<td></td>
<td>1M finding 17%</td>
<td></td>
</tr>
</tbody>
</table>
| L = \[
\frac{17}{100} \times 5000
\] \(\check{M}\) | 1CA simplification | |
| = 850 \(\check{CA}\) | OR | |
| OR | 16% of the total is 800 | 1M finding unit value | |
| 1% of the total is \[
\frac{800}{16}
\] | 1CA simplification | |
| \(\therefore\) 17% of the total is \[
\frac{800 \times 17}{16}
\] \(\check{M}\) | Correct answer only full marks | |
<p>| (\therefore) L = 850 (\check{CA}) | The values need not be calculated in the same order as on the memo | |
| Please note | | (7) | |
| If L is found first: (\check{M}) (\check{CA}) | | | |
| N = 350 + 750 + 1 050 + 850 + 800 + 900 + 200 + 100 | | | |
| = 5 000 (\check{CA}) | | | |
| 5.2.2 | Vivesh's % ((\text{value of M})) | | 12.1.1 L4 |
| (\therefore) Vivesh's bonus = 18% of R300 000 (\check{M}) | 1M calculating percentage | |
| = R54 000 (\check{CA}) | 1CA simplification | |
| (\therefore) The objection is NOT VALID. (\check{CA}) | 1CA conclusion | |
| 5.2.3 | R50 000 (\check{CA}) (\check{A}) | 2A correct basic bonus | 12.1.1 L3 |</p>
<table>
<thead>
<tr>
<th>Ques</th>
<th>Solution</th>
<th>Explanation</th>
<th>AS</th>
</tr>
</thead>
</table>
| 5.2.3 (b) | Total bonus amount = 6.5% \(\times \) R5 500 000
\[= R357 500 \checkmark A \]
Sales up to and including 10%: 3 persons
Sales of more than 10% up to and including 20%: 4 persons
Sales of more than 20%: 1 person
Bonus amount remaining
\[= R357 500 \checkmark M \]
\[= R357 500 - (3 \times R10 000 + 4 \times R50 000 + R100 000) \]
\[= R357 500 - R330 000 \]
\[= R27 500 \checkmark CA \]
\[\text{Amount each will receive} = \frac{R27500}{8} \checkmark M \]
\[= R3 437,50 \checkmark CA \]
Mabel's total bonus = R100 000 + R3 437,50
\[= R103 437,50 \checkmark CA \]
\[\therefore \text{Mabel's bonus is NOT MORE THAN} \text{ than R104 000.} \]
1A total bonus
1 M finding the total basic bonus
1M finding the difference
1CA simplification
1M dividing by 8
1CA simplification
1CA Mabel's bonus (must include R100 000)
1O verification (8) |
| 5.3.1 | Vivesh's sales in 2012 was more than double his sales in 2011. Vivesh was the top salesperson in 2012.
\(\checkmark O \checkmark O \)
\text{OR}
There is an increase in percentage sales from 12% to 28%
\(\checkmark O \checkmark O \)
Any other numerical comparison (2)
2O interpretation
12.4.6 L4 |
| 5.3.2 | He read Mabel's and Henry's combined sales of 2011 and 2012 as the sales for 2012.
\(\checkmark O \checkmark O \)
Henry's sales for 2012 were only 25%, Mabel's sales were 21% and the person with the highest sales was Vivesh with 28%
\(\checkmark J \checkmark J \)
1J Henry & Mabel
1J mention Vivesh as highest (4)
2O errors
12.4.6 L4 |
| 5.3.3 | Any \text{ TWO} of the following:
\begin{itemize}
\item Different type of Bar graphs
\(\checkmark O \)
\item Line graphs
\(\checkmark O \)
\item Pie charts
\end{itemize}
1O bar graphs
1O line graphs
\text{OR}
1O pie charts (2)
12.4.6 L2 |

TOTAL: 150

Copyright reserved