MATHEMATICS P3
NOVEMBER 2011
POSSIBLE ANSWERS

MARKS: 100

This memorandum consists of 14 pages.
NOTE:
- If a candidate answers a question TWICE and does not delete any attempt, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent Accuracy applies in ALL aspects of the marking memorandum.
- A learner cannot use what s/he must prove to prove it (i.e. the circular argument.).

QUESTION 1

1.1 \[T_{k+1} = T_k - 2; \quad k \geq 1; \quad T_1 = 12 \]

- \[T_1 = 12 \]
- \[T_2 = 12 - 2 = 10 \]
- \[T_3 = 10 - 2 = 8 \]
- \[T_4 = 8 - 2 = 6 \]

\[\checkmark \quad 10 \]
\[\checkmark \quad 8 \]
\[\checkmark \quad 6 \]

1.2 \[12 + 10 + 8 + 6 + 4 + 2 + 0 + (-2) + (-4) + (-6) + (-8) + (-10) + (-12) = 0 \]
\[\therefore 13 \text{ terms} \]

Note:
- If a learner writes out \[12 + 10 + 8 + 6 + 4 + 2 + 0 \] then 1/3 marks

OR

There are 6 positive terms before the 7th term, which is 0. We need 6 negative terms of equal value to the positive terms so that the sum is zero.

6 positive terms + 1 zero term + 6 negative terms = 13 terms

OR

\[\frac{n}{2} [2(12) + (n-1)(-2)] = 0 \]

\[\frac{n}{2} [24 + 2 - 2n] = 0 \]

\[\frac{n}{2} [26 - 2n] = 0 \]

\[13n - n^2 = 0 \]

\[n(13 - n) = 0 \]

\[n \neq 0 \quad \text{or} \quad n = 13 \]

\[\checkmark \quad T_7 = 0 \]

\[\checkmark \quad 12 \text{ terms} \]

\[\checkmark \quad 13 \text{ terms} \]

\[\checkmark \quad \text{substitution into the arithmetic sum formula} \]

\[\frac{n}{2} [26 - 2n] = 0 \]

\[\checkmark \quad 13 \text{ terms} \]
QUESTION 2

2.1 42 – 28 = 14

2.2 Approximately 88 kg

NOTE: Accept a range from 86 to 89 kg

2.3 15 learners in the sample have a weight of less than 80 kg. One would expect \(\frac{15}{50} \times 250 = 75 \) learners in the grade to have a weight of less than 80 kg.

OR

15 learners in the sample have a weight of less than 80 kg. One would expect \(15 \times 5 = 75 \) learners in the grade to have a weight of less than 80 kg.

NOTE:
- Accept \(\frac{14}{50} \times 250 = 70 \)
- Answer as percentage: 1/2 marks
- Answer only: 2/2 marks

2.4 This sampling method is biased towards those who arrive early on a Monday morning. In this way all the learners in the Grade do not have the same chance of being selected for the sample.

QUESTION 3

3.1 For mutually exclusive events

\[
P(A \text{ or } B) = P(A) + P(B) = 0,7 + 0,4 + k
\]

\[
k = 0,3
\]

NOTE:
If the candidate writes down \(k = 1 - 0,7 = 0,3 \): 0/2 marks

3.2 For independent events

\[
P(A \text{ and } B) = P(A) \times P(B) = 0,4k
\]

\[
P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) = 0,7 + 0,4 + k - 0,4k
\]

\[
0,3 = 0,6k
\]

\[
k = 0,5
\]

OR

\[
0,7 = 0,4 + k - 0,4k
\]

\[
0,3 = 0,6k
\]

\[
k = 0,5
\]

Note:
- Answer only: 1/4 marks
- Wrong formula: 0/4 marks

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]
QUESTION 4

4.1 21 minutes is 1 standard deviation from the mean
∴ 34% of the pizzas are delivered between 21 and 24 minutes

Note: Answer only: FULL marks

4.2 15 minutes is 3 standard deviations to the left of the mean ∴ 50%
27 minutes is 1 standard deviation to the right of the mean ∴ 34%
84% of the pizzas are delivered between 15 and 27 minutes

Note: Answer only: FULL marks

4.3 The required 2% is the area found to the right of 2 standard deviations on the right hand side of the mean.
Maximum for delivery should be
24 + 2(3)
= 30 minutes

Note: Answer only: FULL marks

QUESTION 5

5.1 Number of unique codes
= 7 × 7 × 7
= 7³
= 343

Note: Answer only: FULL marks

5.2 Number of unique codes without repetition
= 7 × 6 × 5
= 210

Note: Answer only: FULL marks

5.3 Number of codes with repetition that are greater than 300 and divisible by 5
= 4 × 7 × 2 – 1
= 55

Note: No CA marking for the answer.
Answer only 3/3 marks

For a 100 numbers there are 14 numbers divisible by 5
14 × 4 = 56
56 – 1 = 55

Note: Answer only: FULL marks

Copyright reserved
QUESTION 6

6.1

\[\begin{align*}
79 - x & \\
20 & \\
19 - x & \\
x & \\
11 & \\
16 & \\
40 - x & \\
0 &
\end{align*} \]

\[\sqrt{79 - x} \]
\[\sqrt{20} \]
\[\sqrt{19 - x} \]
\[\sqrt{x} \]
\[\sqrt{11} \]
\[\sqrt{16} \]
\[\sqrt{40 - x} \]

6.2

\[79 - x + 20 + x + 11 + 19 - x + 16 + 40 - x = 173 \]
\[185 - 2x = 173 \]
\[x = 6 \]

OR

232 complaints and 173 people in total
94 complaints from 47 people
138 complaints from remaining 126 people
For the two to be equal
\[126 - x = 138 - 3x \]
\[2x = 12 \]
\[x = 6 \]

OR

\[110 + 55 + 67 = 232 \]
\[2x + 20 + 11 + 16 = 232 - 173 \]
\[2x + 47 = 59 \]
\[2x = 12 \]
\[x = 6 \]

6.3

\[\begin{align*}
P(\text{at least two complaints}) & = \frac{11 + 20 + 6 + 16}{173} \\
& = \frac{53}{173} \\
& = 0.31 \ (0.30635838...) \\
\end{align*} \]

OR \ 30.64\%
QUESTION 7

<table>
<thead>
<tr>
<th>Noon temperature (in °C)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>7</th>
<th>7</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units of electricity used</td>
<td>37</td>
<td>36</td>
<td>32</td>
<td>33</td>
<td>32</td>
<td>28</td>
<td>27</td>
<td>23</td>
<td>20</td>
</tr>
</tbody>
</table>

Scatter plot showing noon temperature vs electricity consumption

7.1 See scatter plot above

Note:
Please ignore the point (0 ; 41).

☑️☑️☑️ all 9 points plotted correctly
2 marks if 5 – 8 points are plotted correctly
1 mark if 1 – 4 points are plotted correctly.

(3)
Question 7.2

\[
\begin{align*}
\text{a} &= 40.97 \quad (40.97108844...) \\
b &= -1.74 \quad (-1.736394558...) \\
\hat{y} &= 40.97 - 1.74x
\end{align*}
\]

Note:
- Penalise 1 mark for incorrect rounding to ONE decimal place in either 7.2 or 7.3
- Answer only: FULL marks

NOTE:
If the candidate works the coefficients out manually that
\[
b = \frac{-204.2}{117.6}
\]
then 2 marks for \(b\).

![Image](image.png)

Question 7.3

\[
r = -0.97 \quad (-0.9699269087...)
\]

NOTE: If the candidate gives \(b = \frac{6.139218}{3.42928} r\) and not simplified then 1 mark.

![Image](image.png)

Question 7.4

There is a strong negative correlation between the noon temperature and the units of electricity used.

OR

As the noon temperature increases, the units of electricity used decreases.

OR

As the noon temperature decreases, the units of electricity used increases.

![Image](image.png)

Question 7.5

\[
\hat{y} \approx 40.97 - 1.74(8) \\
\approx 27.05
\]

Note:
- Answer only: 2/2 marks
- Accept a range of 26.5 – 27.5 if the least squares regression line is drawn and the answer is read off: 2/2 marks

![Image](image.png)
8.1 Draw diameter AM and join M to B.
\(\hat{A}_1 + \hat{A}_2 = 90^\circ \) (rad \(\perp \) tangent)
\(\hat{B}_1 + \hat{B}_2 = 90^\circ \) (\(\angle \)s in a semi circle)
\(\hat{B}_2 = \hat{A}_2 \) (\(\angle \)s in same seg)
\(\hat{B}_1 = \hat{A}_1 \)

\(\hat{C}_1 = x \) (\(\angle \) opp = radii)
\(\hat{A}_1 = 90^\circ - x \) (rad \(\perp \) tan)
\(AOC = 180^\circ - 2x \) (\(\angle \) sum \(\Delta \))
\(\hat{A}_1 + \hat{A}_2 = 90^\circ \) (\(\angle \) circ cent = 2 \(\angle \) circumference)
\(ABC = A_1 \) (= 90\(^\circ\) - \(x \))

NOTE:
If there is no construction: 0 / 5 marks
If candidate changes lettering and states “Similarly”: full marks

OR
Draw radii OC and OA
Let \(\hat{A}_2 = x \)
\(\hat{C}_1 = x \) (\(\angle \) opp = radii)
\(\hat{A}_1 = 90^\circ - x \) (rad \(\perp \) tan)
\(AOC = 180^\circ - 2x \) (\(\angle \) sum \(\Delta \))
\(\hat{A}_1 = 90^\circ - x \) (rad \(\perp \) tan)
\(S/R \)

\(\hat{A}_1 + \hat{A}_2 = 90^\circ \)
\(S/R \)

\(\hat{A}_1 + \hat{A}_2 = 90^\circ \)
\(\angle \) circ cent = 2 \(\angle \) circumference
Draw diameter AM and Join M and C

$\hat{M}CA = 90^\circ$ (\(\angle s\) in semi circle)

$\hat{A}_M + \hat{A}_2 = 90^\circ$ (\(\angle s\) sum \(\Delta\))

$\hat{A}_1 + \hat{A}_2 = 90^\circ$ (rad \perp tangent)

$\hat{A}_M = \hat{A}_1$

$\hat{A}_M = \hat{B}$ (\(\angle s\) in same seg)

$\hat{A}_1 = \hat{B}$

8.2.1 \[
\widehat{WRS} = 90^\circ \quad (\tan \perp radius)
\]

8.2.2 \[
\widehat{RST} = 50^\circ \quad (\tan ch th)
\hat{W} = 40^\circ \quad (\angle s\ sum \Delta)
\]

\textbf{OR}

$\hat{T}_1 = 90^\circ$ (\(\angle s\) in semi circle)

$\hat{W} + \hat{R}_1 = \hat{T}_1$ (ext \(\angle \Delta\))

$\hat{W} = 40^\circ$

8.2.3 \[
\hat{R}_2 = 40^\circ \quad (\tan \perp radius)
\hat{P}_1 = 40^\circ \quad (\angle s\ in\ same\ seg)
\]

\(\widehat{R}_2 = 40^\circ\)

\(\hat{P}_1 = 40^\circ\)

\(\angle s\ in\ same\ seg\)
8.2.4 \(\hat{P}_1 = \hat{W} \quad (= 40^\circ) \)
WVPT is a cyclic quadrilateral \(\text{ (ext } \angle = \text{ int opp) } \)
\(\hat{V}_1 = P\hat{T}\hat{S} \quad \text{(ext } \angle \text{ cyclic quad) } \)

OR
\(\hat{T}_1 = 90^\circ \quad \text{(} \angle \text{s in semi circle) } \)
\(P\hat{T}\hat{S} = 90^\circ + \hat{T}_2 \)
\(\hat{T}_2 = \hat{S}_1 \quad \text{(} \angle \text{s in same seg) } \)
\(P\hat{T}\hat{S} = 90^\circ + \hat{T}_1 \)
\(\hat{V}_1 = 90^\circ + \hat{S}_1 \quad \text{(ext } \angle \Delta) \)
\(\hat{V}_1 = P\hat{T}\hat{S} \)

OR
\(\hat{P}_2 = 140^\circ \quad \text{(} \angle \text{s on str line) } \)
\(\hat{W} + \hat{P}_2 = 180^\circ \)
WVPT is cyclic quad \(\text{ (opp } \angle \text{s suppl) } \)
\(\hat{V}_1 = P\hat{T}\hat{S} \quad \text{(ext } \angle \text{ cyclic quad) } \)

OR
\(\hat{V}_1 = \hat{R}_1 + \hat{R}_2 + \hat{S}_1 \quad \text{(ext } \angle \Delta) \)
\(\hat{V}_1 = 90^\circ + \hat{S}_1 \)
\(P\hat{T}\hat{S} = 90^\circ + \hat{T}_2 \)
But \(\hat{T}_2 = \hat{S}_1 \quad \text{(} \angle \text{s in same seg) } \)
\(\hat{V}_1 = P\hat{T}\hat{S} \)

OR
In \(\triangle P\hat{T}\hat{S} \) and \(\triangle W\hat{V}\hat{S} \)
\(\hat{P}_1 = \hat{W} \quad (= 40^\circ) \)
\(\hat{S}_2 \text{ is common} \)
\(\hat{V}_1 = P\hat{T}\hat{S} \quad \text{(} \angle \text{ sum } \Delta) \)

[15]
QUESTION 9

9. \(\hat{C} = 90^\circ \) (\(\angle s \) in semi circle)
 O\(\hat{E}A = 90^\circ \) (corres \(\angle s \); OD \(\parallel \) BC)
 AE = 8 cm (line from circ cent \(\perp \) ch bis ch)
 OE = 6 cm (Pythagoras)
 ED = 10 \(- 6\)
 = 4 cm

 OR
 \(\hat{C} = 90^\circ \) (\(\angle s \) in semi circle)
 O\(\hat{E}A = 90^\circ \) (corres \(\angle s \); OD \(\parallel \) BC)
 OE \parallel BC (given)
 OA = OB (radii)
 AE = EC = 8cm (midpoint theorem)
 OE = 6 cm (Pythagoras)
 ED = 10 \(- 6\)
 = 4 cm

 OR
 \(\hat{C} = 90^\circ \) (\(\angle s \) in semi circle)
 BC\(^2\) = (20\(^2\) \(- (16\(^2\)
 BC = 144
 BC = 12
 OE = \(\frac{1}{2} \)BC (midpoint theorem)
 OE = 6 cm
 OD = 10cm
 ED = 10 \(- 6\)
 = 4 cm

 OR
 \(\hat{C} = 90^\circ \) (\(\angle s \) in semi circle)
 BC\(^2\) = (20\(^2\) \(- (16\(^2\)
 BC = 144
 BC = 12
 OE = \(\frac{1}{2} \)BC (midpoint theorem)
 OE = 6 cm
 ED = 4 cm

[5]
QUESTION 10

10.1
\[
\hat{A} = \hat{D}_4 = x \quad \text{(tan ch th)}
\]
\[
\hat{E}_2 = x \quad \text{(tan ch th) OR (} \angle s \text{ in same seg)}
\]
\[
\hat{D}_2 = \hat{A} = x \quad \text{(alt } \angle s; \text{ CA } \parallel \text{ DF)}
\]

10.2
In \(\triangle BHD\) and \(\triangle FED\)
1. \(\hat{B}_2 = \hat{F}\) \(\quad (\angle s \text{ in same seg})\)
2. \(\hat{D}_3 = \hat{D}_1\) \(\quad (= \text{ chs subt } = \angle s)\)

\(\triangle BHD \parallel \triangle FED\, (\angle \angle \angle)\)

10.3
\[
\frac{FE}{BH} = \frac{FD}{BD} \quad (\parallel \Delta s)
\]
But \(FE = AB\) \(\text{ (given)}\)
\[
\frac{AB}{BH} = \frac{FD}{BD}
\]
\[
AB \cdot BD = FD \cdot BH
\]

Copyright reserved
QUESTION 11

11.1 \[\frac{AF}{FC} = 1 \] (diags of parallelogram bisect)
\[FE \parallel CD \]
\[AE = ED \] (Prop Th; FE \parallel CD) OR (Midpoint Theorem)
\[\checkmark AF = FC \]
\[\checkmark \text{reason} \]

11.2 \[\frac{AC}{CP} = 1 \] (given)
\[\frac{AD}{DQ} = 1 \] (given)
\[\frac{AC}{CP} = \frac{AD}{DQ} \]
\[CD \parallel PQ \] (converse proportionality theorem)
\[CD \parallel FE \] (given)
\[\therefore PQ \parallel FE \]
\[\checkmark \text{ratios equal} \]
\[\checkmark CD \parallel PQ \]
\[\checkmark \text{reason: converse} \]
prop th and conclusion

\[\checkmark \text{prop th and conclusion} \]

\[\checkmark \frac{AF}{AP} = 1 \]
\[\checkmark \frac{AE}{AQ} = \frac{AF}{AP} \]
\[\checkmark \text{conv prop theorem} \]

Copyright reserved
11.3 In $\triangle AEF$ and $\triangle APQ$
1. $\angle A$ is common
2. $\angle AEF = \angle AQP$ (corres \angles; $FE \parallel PQ$)
3. $\angle AFE = \angle APQ$ (corres \angles; $FE \parallel PQ$)

$\therefore \triangle AEF \sim \triangle AQP$ ($\angle \angle $)

\[
\frac{FE}{PQ} = \frac{AF}{AP} \quad (\parallel \Delta s)
\]

\[
\frac{FE}{PQ} = \frac{1}{6}
\]

$FE = 10 \text{ cm}$

NOTE: If the similarity has not been proven, then max 3/5 marks

OR

In $\triangle ADC$ and $\triangle APQ$
1. $\angle A$ is common
2. $\angle ADC = \angle AQP$ (corres \angles; $CD \parallel PQ$)
3. $\angle ACD = \angle APQ$ (corres \angles; $CD \parallel PQ$)

$\therefore \triangle ADC \sim \triangle AQP$ ($\angle \angle $)

\[
\frac{AC}{AD} = \frac{1}{3} \quad (\parallel \Delta s)
\]

\[
\frac{CD}{PQ} = \frac{1}{3}
\]

$CD = 20 \text{ cm}$

But $AF = FC$

$AE = ED$ (Midpoint Theorem)

$FE = \frac{1}{2} CD$

$FE = 10 \text{ cm}$

✓ first pair of angles equal with reason
✓ second pair of angles equal with reason

\[
\frac{AF}{AP} = \frac{1}{6}
\]

\[
\frac{FE}{PQ} = \frac{AF}{AP}
\]

✓ answer

\[5\]

\[
\frac{CD}{PQ} = \frac{1}{3}
\]

✓ $FE = \frac{1}{2} CD$

✓ answer

\[5\]

TOTAL: 100