

# basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

# NATIONAL SENIOR CERTIFICATE

**GRADE 12** 

**MATHEMATICS P3** 

**NOVEMBER 2011** 

**POSSIBLE ANSWERS** 

**MARKS: 100** 

This memorandum consists of 14 pages.

Copyright reserved

Please turn over

### NOTE:

- If a candidate answers a question TWICE and does not delete any attempt, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent Accuracy applies in ALL aspects of the marking memorandum.
- A learner cannot use what s/he must prove to prove it (i.e. the circular argument.).

| 1.1 | $T_{k+1} = T_k - 2; \ k \ge 1; \ T_1 = 12$                                                 |                                                                                 |                                                |
|-----|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------|
|     | $T_1 = 12$                                                                                 |                                                                                 |                                                |
|     | $T_2 = 12 - 2 = 10$                                                                        | <b>√</b> 10                                                                     |                                                |
|     | $T_3 = 10 - 2 = 8$                                                                         |                                                                                 | ✓ 8                                            |
|     | $T_4 = 8 - 2 = 6$                                                                          |                                                                                 | <b>√</b> 6 (3)                                 |
| 1.2 |                                                                                            | + (-6) + (-8) + (-10) + (-12)                                                   | ✓✓ expansion                                   |
|     | ∴13 terms                                                                                  | Note:<br>If a learner writes out $12 + 10 + 8 + 6 + 4 + 2 + 0$ then $1/3$ marks | ✓ 13 terms (3)                                 |
|     | OR                                                                                         | Note: Answer only: FULL marks                                                   |                                                |
|     | There are 6 positive terms before the 7th te negative terms of equal value to the positive |                                                                                 | $\checkmark T_7 = 0$                           |
|     | 6 positive terms + 1 zero term + 6 negative = 13 terms                                     | terms                                                                           | ✓ 12 terms ✓ 13 terms                          |
|     | OR                                                                                         |                                                                                 | (3)                                            |
|     | $\frac{n}{2}[2(12) + (n-1)(-2)] = 0$ $\frac{n}{2}[24 + 2 - 2n] = 0$                        |                                                                                 | ✓ substitution into the arithmetic sum formula |
|     | $\frac{n}{2}[26-2n]=0$                                                                     | $\checkmark \frac{n}{2}[26-2n] = 0$                                             |                                                |
|     | $13n - n^2 = 0$                                                                            |                                                                                 |                                                |
| •   | $n(13-n) = 0$ $n \neq 0  or  n = 13$                                                       |                                                                                 | ✓ 13 terms (3)                                 |
|     |                                                                                            |                                                                                 | [6]                                            |

3

# **QUESTION 2**

| 2.1 | 42 - 28 = 14                                                                          | ✓ answer           |
|-----|---------------------------------------------------------------------------------------|--------------------|
|     |                                                                                       | (1)                |
| 2.2 | Approximately 88 kg                                                                   | ✓ answer           |
|     | •                                                                                     | (1)                |
|     | NOTE: Accept a range from 86 to 89 kg                                                 |                    |
| 2.3 | 15 learners in the sample have a weight of less than 80 kg. One would expect          | ✓ Cumulative       |
|     | 15 250 - 75 learners in the grade to have a visight of less than 20 kg                | Frequency value    |
|     | $\frac{15}{50}$ × 250 = 75 learners in the grade to have a weight of less than 80 kg. | read off the graph |
|     |                                                                                       | when less than 80  |
|     | OR                                                                                    | ✓ answer           |
|     |                                                                                       | (2)                |
|     | 15 learners in the sample have a weight of less than 80 kg. One would expect          |                    |
|     | $15 \times 5 = 75$ learners in the grade to have a weight of less than 80 kg.         | ✓ Cumulative       |
|     |                                                                                       | Frequency value    |
|     | NOTE:                                                                                 | read off the graph |
|     | • Accept $\frac{14}{50} \times 250 = 70$                                              | when less than 80  |
|     | 50                                                                                    | ✓ answer           |
|     | Answer as percentage: 1/2 marks                                                       | (2)                |
|     | A secretary and the 2/2 months                                                        |                    |
|     | Answer only: 2/2 marks                                                                |                    |
| 2.4 | This sampling method is biased towards those who arrive early on a Monday             | ✓ sensible         |
|     | morning. In this way all the learners in the Grade do not have the same               | explanation of     |
|     | chance of being selected for the sample.                                              | random sample      |
|     |                                                                                       | (1)                |
|     |                                                                                       | [5]                |

| 3.1 | For mutually exclusive events $P(A \text{ or } B) = P(A) + P(B)$ $0.7 = 0.4 + k$ $k = 0.3$ <b>NOTE:</b> If the candidate writes down $k = 1$ | Note: Answer only: FULL marks $-0.7 = 0.3: 0/2 \text{ marks}$ | $ \begin{array}{c} \checkmark 0.7 = 0.4 + k \\ \checkmark \text{ answer} \end{array} $ (2)                                                             |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.2 | k=0,5                                                                                                                                        |                                                               | ✓ P(A and B) = P(A).P(B)<br>✓ 0,4 $k$<br>✓ 0,7 = 0,4 + $k$ - 0,4 $k$<br>✓ answer<br>(4)<br>✓ $k$ ✓ 0,7 = 0,4 + $k$ - 0,4 $k$<br>✓ answer<br>(4)<br>[6] |



| 4.1 | 1 21 minutes is 1 standard deviation from the mean ∴ 34% of the pizzas are delivered between 21 and 24 minutes               |                                  | ✓ 1 standard deviation                   |            |
|-----|------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------|------------|
|     | Note: Answer only: FULL marks                                                                                                |                                  | ✓ 34%                                    | (2)        |
| 4.2 | 15 minutes is 3 standard deviations to the 27 minutes is 1 standard deviation to the 84% of the pizzas are delivered between | e right of the mean : 34%        | ✓ 50%<br>✓ 34%<br>✓ 84%                  | (3)        |
|     | OR<br>2% + 14% + 34% + 34%<br>= 84%                                                                                          | Note:<br>Answer only: FULL marks | ✓ 50%<br>✓ 34%<br>✓ 84%                  | (3)        |
| 4.3 | The required 2% is the area found to the right hand side of the mean.  Maximum for delivery should be 24 + 2(3) = 30 minutes | Note: Answer only: FULL marks    | ✓ 2 standard deviations ✓ 24 + 2(3) ✓ 30 | (3)<br>[8] |

| 5.1 | 5.1 Number of unique codes             |                                         |                                  |     |
|-----|----------------------------------------|-----------------------------------------|----------------------------------|-----|
|     | $= 7 \times 7 \times 7$                | Note:                                   | $\checkmark 7 \times 7 \times 7$ |     |
|     | $= 7^3$                                | Answer only: FULL marks                 | ✓ answer                         |     |
|     | = 343                                  |                                         |                                  | (2) |
| 5.2 | Number of unique codes without rep     | etition                                 |                                  |     |
|     | $= 7 \times 6 \times 5$                |                                         | $\checkmark 7 \times 6 \times 5$ |     |
|     | = 210                                  | Note:                                   | ✓ answer                         |     |
|     | OR                                     | Answer only: FULL marks                 |                                  | (2) |
|     | 7!                                     |                                         | ✓ <u>7!</u>                      |     |
|     | $\frac{7}{4!}$                         |                                         | 4!                               |     |
|     |                                        |                                         | ✓ answer                         |     |
|     | = 210                                  |                                         |                                  | (2) |
| 5.3 | ·                                      | are greater than 300 and divisible by 5 | $\checkmark 4 \times 7 \times 2$ | Ì   |
|     | $=4\times7\times2-1$                   | Note:                                   | <b>√</b> − 1                     |     |
|     | = 55                                   | • No CA marking for the answer.         | ✓ answer                         | (2) |
|     | OR                                     | • Answer only 3/3 marks                 | (144                             | (3) |
|     | For a 100 numbers there are 14 numbers | bers divisible by 5                     | ✓ 14× 4<br>✓ -1                  |     |
|     | $14 \times 4 = 56$                     | · · · · · · · · · · · · · · · · ·       | ✓ – I<br>✓ answer                | İ   |
|     | 56 - 1 = 55                            |                                         | • answer                         | (2) |
|     |                                        |                                         |                                  | (3) |
| L   |                                        |                                         | <u> </u>                         | //  |



Check the reasonableness of

the answer.

#### OR

232 complaints and 173 people in total

94 complaints from 47 people

138 complaints from remaining 126 people For the two to be equal

126 - x = 138 - 3x

$$126 - x = 138 - 3$$

$$2x = 12$$

$$x = 6$$

OR

$$110 + 55 + 67 = 232$$

$$2x + 20 + 11 + 16 = 232 - 173$$

$$2x + 47 = 59$$

$$2x = 12$$

$$x = 6$$

$$= \frac{11 + 20 + 6 + 16}{173}$$

$$= \frac{53}{173}$$

$$= 0,31 \qquad (0,30635838...)$$

OR 30,64%

✓ 126 - x and 138 - 3x

 $\checkmark 126 - x = 138 - 3x$ 

✓ answer

**√** 232

 $\checkmark$  2x + 20 + 11 + 16 = 232 - 173

✓ answer

(3)

(3)

$$\checkmark 11 + 20 + 6 + 16$$

**√** 173

✓ answer

(3) [12]

| Noon temperature (in °C)  | 2  | 3  | 4  | 5  | 7  | 7  | 9  | 10 | 11 |
|---------------------------|----|----|----|----|----|----|----|----|----|
| Units of electricity used | 37 | 36 | 32 | 33 | 32 | 28 | 27 | 23 | 20 |





Copyright reserved

Please turn over

| Mathe | ematics/P3                                                                                                                                                                                                                                                                           | 7<br>NSC –                 | DBE/November 2011                                                         |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------|
|       | a = 40,97 (40,97108844)<br>b = -1,74 (-1,736394558)<br>$\hat{y} = 40,97 - 1,74x$ Note:  • Penalise 1 mark for incorrect decimal place in either 7.2 of each answer only: FULL marks  NOTE:  If the candidate works the coefficient $b = \frac{-204,2}{117,6}$ then 2 marks for $b$ . | t rounding to ONE<br>r 7.3 | $\checkmark$ $\checkmark$ $a$ $\checkmark$ $b$ $\checkmark$ equation  (4) |
|       | r = -0.97 (-0.9699269087) <b>NOTE:</b> If the candidate gives $b = 0.000$ then 1 mark.                                                                                                                                                                                               |                            | ✓✓ answer (2)                                                             |

7.4 There is a strong negative correlation between the noon temperature ✓ strong and the units of electricity used. ✓ negative

As the noon temperature increases, the units of electricity used

decreases.

As the noon temperature decreases, the units of electricity used

increases.

 $\hat{y} \approx 40,97 - 1,74(8)$ ≈ 27,05

OR

OR

OR

7.5

 $\hat{y} \approx 27,0799 \approx 27,08$ 

Note:

- Answer only: 2/2 marks
- Accept a range of 26,5 27,5 if the least squares regression line is drawn and the answer is read off: 2/2 marks

✓ substitution

✓✓ as noon temp increases & units decrease

✓✓ as noon temp decreases & units increases

✓ answer

(2)

[13]

(2)

(2)

(2)

NSC -

### **QUESTION 8**

| 8.1 | Draw diameter AM and join M | to B. |
|-----|-----------------------------|-------|
| O   |                             |       |

$$\hat{A}_1 + \hat{A}_2 = 90^{\circ}$$

$$(rad \perp tangent)$$

$$\hat{B}_1 + \hat{B}_2 = 90^{\circ}$$

$$\hat{\mathbf{B}}_2 = \hat{\mathbf{A}}_2$$

$$\hat{\mathbf{B}}_1 = \hat{\mathbf{A}}_1$$



✓ construction

$$\checkmark \hat{B}_1 + \hat{B}_2 = 90^{\circ}$$

(5)

### OR

Draw radii OC and OA

Let 
$$\hat{A}_2 = x$$

$$\hat{C}_1 = x \ (\angle \text{ opp = radii})$$

$$\hat{A}_1 = 90^{\circ} - x \quad (rad \perp tan)$$

$$\hat{AOC} = 180^{\circ} - 2x \ (\angle \text{sum } \Delta)$$

$$\hat{ABC} = 90^{\circ} - x$$

$$\hat{ABC} = 90^{\circ} - x$$
 ( $\angle$  circ cent = 2  $\angle$  circumference)

$$\hat{ABC} = \hat{A}_1 \qquad (= 90^{\circ} - x)$$

$$(= 90^{\circ} - x)$$



$$\checkmark \hat{A}_1 = 90^{\circ} - x$$

(5)

### NOTE:

If there is no construction: 0 / 5 marks

If candidate changes lettering and states "Similarly": full marks

Draw QA extend to P. Draw tangent CP at C.

PC = PA (tan from comm pt)

$$\hat{C}_2 = \hat{A}_1$$
 ( $\angle$ s opp = sides)  
 $\hat{COA} = 2\hat{ABC}$ 

$$(\angle \text{ circ cent} = 2 \angle \text{ circumf})$$

$$\hat{A}_1 + \hat{A}_2 = 90^{\circ}$$
 (tan  $\perp$  radius)

$$\hat{COA} = 180^{\circ} - (90^{\circ} - \hat{A}_1 + 90^{\circ} - \hat{C}_2)$$
  
=  $\hat{A}_1 + \hat{C}_2$ 

$$= \hat{A}_1 + \hat{C}_2$$
$$= \hat{A}_1 + \hat{A}_1$$

$$=2\hat{A}_1$$

$$\hat{A}_1 = \frac{1}{2}C\hat{O}A$$

$$= \hat{CBA}$$



OR

- ✓ construction
- ✓ S/R
- ✓ S/R

$$\checkmark \hat{A}_1 + \hat{A}_2 = 90^{\circ}$$

(5)

NSC -

Draw diameter AM and Join M and C

 $\hat{MCA} = 90^{\circ}$  ( $\angle s$  in semi circle)

$$\hat{AMC} + \hat{A}_2 = 90^{\circ}$$
 ( $\angle sum \Delta$ )

$$\hat{A}_1 + \hat{A}_2 = 90^{\circ}$$
 (rad  $\perp$  tangent)

$$\hat{AMC} = \hat{A}_1$$

$$\hat{AMC} = \hat{B}$$
 (\( \setminus \text{ in same seg} \)

$$\hat{\mathbf{A}}_1 = \hat{\mathbf{B}}$$



✓ construction

$$\checkmark \hat{A}_1 + \hat{A}_2 = 90^{\circ}$$
  
 $\checkmark \tan \bot \text{ radius}$ 

(5)



| 8.2.1 | WRS = 90°                                                    | (tan ⊥ radius)                       | ✓ statement                                                                                                          |     |
|-------|--------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----|
|       |                                                              |                                      |                                                                                                                      | (1) |
| 8.2.2 | $R\hat{S}T = 50^{\circ}$                                     | (tan ch th)                          | ✓ S/R                                                                                                                |     |
|       | Ŵ = 40°                                                      | $(\angle \operatorname{sum} \Delta)$ | $\checkmark \hat{W} = 40^{\circ}$                                                                                    |     |
|       |                                                              | ` ,                                  |                                                                                                                      | (2) |
|       | OR                                                           |                                      |                                                                                                                      |     |
|       | $\hat{T}_1 = 90^{\circ}$                                     | (∠s in semi circle)                  |                                                                                                                      |     |
|       | $\hat{\mathbf{W}} + \hat{\mathbf{R}}_1 = \hat{\mathbf{T}}_1$ |                                      | $ \begin{array}{ccc} \checkmark & \hat{W} + \hat{R}_1 = \hat{T}_1 \\ \checkmark & \hat{W} = 40^{\circ} \end{array} $ |     |
|       | $\hat{W} = 40^{\circ}$                                       | (on 2 2)                             | √ Ŵ = 40°                                                                                                            | l   |
|       |                                                              |                                      |                                                                                                                      | (2) |
| 8.2.3 | 122                                                          | $(\tan \perp \text{radius})$         | $ \begin{array}{ccc} \checkmark & \hat{R}_2 = 40^{\circ} \\ \checkmark & \hat{P}_1 = 40^{\circ} \end{array} $        |     |
|       | $\hat{P}_1 = 40^{\circ}$                                     | (∠s in same seg)                     | $\hat{P}_1 = 40^{\circ}$                                                                                             |     |
|       |                                                              |                                      | ✓ ∠s in same seg                                                                                                     |     |
|       |                                                              |                                      |                                                                                                                      | (3) |
|       |                                                              |                                      |                                                                                                                      |     |
|       |                                                              |                                      |                                                                                                                      |     |
|       |                                                              |                                      |                                                                                                                      | -   |
|       |                                                              |                                      |                                                                                                                      |     |
|       |                                                              |                                      |                                                                                                                      |     |
|       |                                                              |                                      |                                                                                                                      |     |
|       |                                                              |                                      |                                                                                                                      | Ì   |
| 1     |                                                              |                                      |                                                                                                                      |     |

Mathematics/P3 10 DBE/November 2011 NSC- $\hat{P}_1 = \hat{W}$ 8.2.4  $(=40^{\circ})$  $\checkmark \hat{P}_1 = \hat{W}$ WVPT is a cyclic quadrilateral ✓ WVPT is a cyclic quadrilateral  $(ext \angle = int opp)$  $\hat{V}_1 = P\hat{T}S$ ✓ ext  $\angle$  = in opp (ext ∠ cyclic quad) ✓ ext ∠ cyclic quad (4) OR ✓ ∠s in semi circle  $\hat{T}_1 = 90^{\circ}$  ( $\angle$ s in semi circle)  $\checkmark P\hat{T}S = 90^{\circ} + \hat{T}_2$  $\hat{PTS} = 90^{\circ} + \hat{T}_2$  $\checkmark \hat{T}_2 = \hat{S}_1$  $\hat{T}_2 = \hat{S}_1$  (\( \sigma \text{s in same seg} \) ✓ ∠s in same seg  $P\hat{T}S = 90^{\circ} + \hat{S}_1$ (4) $\hat{V}_1 = 90^{\circ} + \hat{S}_1 \text{ (ext } \angle \Delta)$  $\hat{V}_1 = P\hat{T}S$ OR  $\hat{P}_2 = 140^{\circ}$  (\( \sec\) s on str line)  $\checkmark \hat{W} + \hat{P}_2 = 180^{\circ}$ ✓ WVPT is a cyclic quadrilateral  $\hat{W} + \hat{P}_2 = 180^{\circ}$ WVPT is cyclic quad (opp ∠s suppl) ✓ opp ∠ suppl  $\hat{V}_1 = P\hat{T}S$ ✓ ext ∠ cyclic quad (ext ∠ cyclic quad) (4) OR  $\hat{\mathbf{V}}_1 = \hat{\mathbf{R}}_1 + \hat{\mathbf{R}}_2 + \hat{\mathbf{S}}_1 \quad (\text{ext } \angle \Delta)$  $\checkmark \hat{V}_1 = 90^{\circ} + \hat{S}_1$  $\hat{V}_1 = 90^{\circ} + \hat{S}_1$  $\checkmark P\hat{T}S = 90^{\circ} + \hat{T}_2$  $P\hat{T}S = 90^{\circ} + \hat{T}_2$  $\checkmark \hat{T}_2 = \hat{S}_1$ But  $\hat{T}_2 = \hat{S}_1$  ( $\angle$ s in same seg) ✓ ∠s in same seg  $\hat{V}_1 = P\hat{T}S$ OR In  $\triangle PTS$  and  $\triangle WVS$ ✓ identification of triangles  $\hat{P}_1 = \hat{W}$  $(=40^{\circ})$  $\checkmark \hat{P}_1 = \hat{W}$  $\hat{S}_2$  is common  $\checkmark \hat{S}_2$  is common

$$\hat{V}_1 = P\hat{T}S$$
 ( $\angle sum \Delta$ )

(4)

 $\checkmark \angle \text{sum } \Delta$ 

(4) [15]

NSC-

# **QUESTION 9**

| 9. | Ĉ = 90°     | (∠s in semi circle)                     |
|----|-------------|-----------------------------------------|
|    | OÊA = 90°   | (corres ∠s; OD    BC)                   |
|    | AE = 8  cm  | (line from circ cent $\perp$ ch bis ch) |
|    | OE = 6  cm  | (Pythagoras)                            |
|    | ED = 10 - 6 | ,                                       |
|    | = 4  cm     |                                         |
|    | OR          |                                         |
|    | Ĉ - 90°     | (∠s in semi circle)                     |
| 1  | 1 0 - 30    | (2.5 III SCIIII CIICIC)                 |

(given)

(radii)

(corres  $\angle$ s; OD  $\parallel$  BC)

(midpoint theorem)



 $\checkmark \hat{C} = 90^{\circ}$ ✓ OÊA = 90°

✓ line from circ cent ⊥ ch bis ch

 $\checkmark$  OE = 6 cm

 $\checkmark$  ED = 4 cm

 $\checkmark \hat{C} = 90^{\circ}$ 

✓ OÊA = 90°

✓ midpoint theorem

 $\checkmark$  OE = 6 cm

OE = 6 cm(Pythagoras) ED = 10 - 6 $\checkmark$  ED = 4 cm =4 cm

OR

C = 90° ( $\angle$ s in semi circle) BC<sup>2</sup> =  $(20)^2 - (16)^2$ 

 $BC^2 = 144$ BC = 12

 $O\hat{E}A = 90^{\circ}$ 

AE = EC = 8cm

OE || BC

OA = OB

(midpoint theorem)

OE = 6 cm

OD = 10cm

ED = 10 - 6=4 cm

 $\checkmark \hat{C} = 90^{\circ}$ 

 $\checkmark$  BC = 12

✓ reason

✓ OE = 6 cm

 $\checkmark$  ED = 4 cm

[5]

OR

 $C = 90^{\circ}$  ( $\angle$ s in semi circle) BC<sup>2</sup> =  $(20)^2 - (16)^2$ BC<sup>2</sup> = 144

BC = 12

 $OE = \frac{1}{2}BC$ (midpoint theorem)

OE = 6 cm

ED = 4cm

 $\checkmark \hat{C} = 90^{\circ}$ 

 $\checkmark$  BC = 12

✓ reason

 $\checkmark$  OE = 6 cm

 $\checkmark$  ED = 4 cm

[5]

NSC -



| 10.1 | $\hat{A} = \hat{D}_4 = x$ (tan ch th)<br>$\hat{E}_2 = x$ (tan ch th) <b>OR</b> ( $\angle$ s in same seg)<br>$\hat{D}_2 = \hat{A} = x$ (alt $\angle$ s; CA    DF) | ✓ $\hat{A} = x$<br>✓ tan ch th<br>✓ $\hat{E}_2 = x$<br>✓ reason                                    |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|      |                                                                                                                                                                  | $\checkmark \hat{D}_2 = x$ $\checkmark \text{ alt } \angle s; \text{ CA } \parallel \text{DF}$ (6) |
| 10.2 | In ΔBHD and Δ FED                                                                                                                                                |                                                                                                    |
|      | 1. $\hat{B}_2 = \hat{F}$ ( $\angle$ s in same seg)                                                                                                               | $\checkmark \hat{B}_2 = \hat{F}$                                                                   |
|      | 2. $\hat{D}_3 = \hat{D}_1$ (= chs subt = $\angle$ s)                                                                                                             | ✓ ∠s in same seg                                                                                   |
|      |                                                                                                                                                                  | $\checkmark \hat{D}_3 = \hat{D}_1$                                                                 |
|      | $\Delta BHD \parallel \Delta FED (\angle \angle \angle)$                                                                                                         | $\checkmark$ = chs subt = $\angle$ s                                                               |
|      |                                                                                                                                                                  | √ ∠∠∠                                                                                              |
| 10.2 |                                                                                                                                                                  | (5)                                                                                                |
| 10.3 | $\frac{\text{FE}}{\text{BH}} = \frac{\text{FD}}{\text{BD}}$ (    \Delta s)                                                                                       | $\checkmark \frac{FE}{BH} = \frac{FD}{BD}$                                                         |
|      |                                                                                                                                                                  |                                                                                                    |
|      | But FE = AB (given)  AB FD                                                                                                                                       | $\checkmark FE = AB$                                                                               |
|      | $\frac{AB}{BH} = \frac{FD}{BD}$                                                                                                                                  | (2)                                                                                                |
|      | AB.BD = FD.BH                                                                                                                                                    |                                                                                                    |
|      | 12.22                                                                                                                                                            | [13]                                                                                               |

NSC -



|      |                                                               | I ————Q                                          |                                                                                   |
|------|---------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------|
| 11.1 | AF = FC                                                       | (diags of parallelogram bisect)                  | ✓ AF = FC                                                                         |
|      | FE    CD<br>AE = ED                                           | (Prop Th; FE    CD) <b>OR</b> (Midpoint Theorem) | ✓ reason (2)                                                                      |
| 11.2 | $\frac{AC}{CP} = \frac{1}{2}$ AD 1                            | (given)                                          |                                                                                   |
|      | $\frac{AD}{DQ} = \frac{1}{2}$                                 | (given)                                          |                                                                                   |
|      | $\frac{AC}{CP} = \frac{AD}{DQ}$                               | ()                                               | ✓ ratios equal                                                                    |
|      | CD    PQ<br>CD    FE<br>∴ PQ    FE                            | (converse proportionality theorem) (given)       | ✓ CD    PQ<br>✓ reason: <b>converse</b><br>prop th and conclusion<br>(3)          |
|      | OR                                                            |                                                  |                                                                                   |
|      | $\frac{AC}{AP} = \frac{1}{3}$ $\frac{AD}{AQ} = \frac{1}{3}$   |                                                  |                                                                                   |
|      | $\frac{AC}{AP} = \frac{AD}{AQ}$                               |                                                  | ✓ ratios equal                                                                    |
|      | 1                                                             | (converse proportionality theorem) (given)       | ✓ CD    PQ<br>✓ reason: <b>converse</b><br>prop th and conclusion                 |
|      | $\frac{AF}{AP} = \frac{1}{6}$                                 |                                                  | $\checkmark \frac{AF}{AP} = \frac{1}{6}$                                          |
|      | $\frac{AE}{AQ} = \frac{1}{6}$ $\frac{AF}{AP} = \frac{AE}{AQ}$ |                                                  | $\checkmark \frac{AF}{AP} = \frac{AE}{AQ}$ $\checkmark \text{ conv prop theorem}$ |
|      | ∴ PQ    FE                                                    | (converse proportionality theorem)               | prop uncoroni                                                                     |

**NSC** 

| 11.3 | In ΔAEF | and | AAPO                   |
|------|---------|-----|------------------------|
| 11.5 |         | anu | $\Delta \Delta 1 \cup$ |

- 1. Â is common
- 2.  $\triangle AEF = AQP$  (corres  $\angle s$ ;  $\triangle FE \parallel PQ$ )
- 3.  $A\hat{F}E = A\hat{P}Q$  (corres  $\angle s$ ;  $FE \parallel PQ$ )

 $\therefore \Delta AEF \parallel \Delta AQP (\angle \angle \angle)$ 

$$\frac{FE}{PQ} = \frac{AF}{AP} \qquad (\parallel \Delta s)$$

$$FE = 1$$

**NOTE**: If the similarity has not been proven, then max 3/5 marks

FE = 10 cm

#### OR

In ΔADC and ΔAPQ

- 1. Â is common
- 2.  $\hat{ADC} = \hat{AQP}$  (corres  $\angle s$ ;  $\hat{CD} \parallel PQ$ )
- 3.  $\hat{ACD} = \hat{APQ}$  (corres  $\angle s$ ;  $\hat{CD} \parallel PQ$ )

 $\therefore \Delta ADC \parallel \Delta AQP (\angle\angle\angle)$ 

$$\frac{AC}{AP} = \frac{AD}{AQ} = \frac{1}{3} \qquad (||| \Delta s)$$

$$CD = \frac{1}{3}PQ$$

$$CD = 20 \text{ cm}$$

But 
$$AF = FC$$

AE = ED (Midpoint Theorem)

$$FE = \frac{1}{2}CD$$

FE = 10 cm

✓ first pair of angles equal with reason ✓ second pair of angles equal with reason

$$\checkmark \frac{AF}{AP} = \frac{1}{6}$$

$$\checkmark FE - AF$$

 $\checkmark \frac{FE}{PQ} = \frac{AF}{AP}$ 

✓ answer

(5)

✓ first pair of angles equal with reason ✓ second pair of angles equal with reason

$$\checkmark$$
 CD =  $\frac{1}{3}$  PQ

$$\checkmark \text{ FE} = \frac{1}{2} \text{ CD}$$

✓ answer

(5) **[10]** 

**TOTAL: 100**