

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 100

This memorandum consists of 11 pages.

Please turn over

2 NSC – Memorandum

QUESTION 1

Time taken to complete task (in seconds)	23	21	19	9	15	22	17	14	21	18
Number of errors made	2	4	5	9	7	3	7	8	3	5

Scatter plot showing time taken to complete task and number of errors made

Time taken (in seconds)

1.1	See scatter plot above.	$\checkmark \checkmark \checkmark$ all 10 points
		plotted correctly.
		2 marks if 5–9
		points are plotted
		correctly.
		1 mark if 1–4 points
		are plotted correctly.
		(3)
1.2	When more time is taken to complete the task, the learners make	\checkmark explanation
	fewer errors.	(1)
	OR	
	When loss time is taken to complete the task, the learners make more	
	when less time is taken to complete the task, the learners make more	
1.0		
1.3	a = 14,71 (14,705811)	$\checkmark \checkmark a$
	b = -0,53 (-0,525464)	✓ b
	$\hat{y} = 14,71 - 0,53x$	\checkmark equation
		(4)
1.4	r = -0.96 (-0.959074)	✓✓ answer
		(2)

195C – Memorandum				
1.5	$\hat{y} \approx 14,71 - 0,53(13)$	\checkmark substitution		
	≈ 7.82	✓ answer		
		(2)		
	≈ 8			
1.6	There is a strong negative relationship between the variables.	\checkmark strong negative		
		(1)		
		[13]		

2.1	The bar graph shows a significant decrease in the number of rhino killed in 2012. This creates the impression that there is no crisis in the number	✓ no crisis
	of rhino killed by poachers. Instead, it suggests that the problem is under control.	(1)
2.2	The first two bars show the number of rhino killed in a full year. The bar for 2012 reflects the number of rhino killed in the first 113 days of the year. Therefore, this graph cannot be used to make a comparison of the number of rhinos killed each year.	✓ 2012 bar is not for a full year (1)
2.3.1	You can use the existing figures for 2012 to project the total number of rhinos that will be killed in 2012. If the rate at which rhinos are killed 168	✓ project total number for the vear
	remains constant for the year, then $\frac{1}{113} \times 365 = 543$ rhino will be killed in 2012.	(1)
	OR You can calculate the number killed per day and represent this information on a graph	
2.3.2		
	Number of rhinos killed each year	
	500	✓ correct scaling of <i>y</i> -axis
	B 400	✓ correct height of bars
	200	
		(2)
	2010 2011 2012 Year	
	OR	

3.2.1	90 = 72 + 2(9) ∴ 90 lies at 2 standard deviations to the right of the mean. ⇒ 48% of the students scored between 72 and 90 marks.	✓2 sd from mean ✓48%
3.2.2	 45 = 72 - 3(9) ∴ 45 lies at 3 standard deviations to the left of the mean. 63 = 72 - 9 ∴ 63 lies at 1 standard deviation to the left of the mean. The area between 1 sd and 3 sd is approximately 16%. ∴ 16% of 184 = approximately 29 students scored between 45 and 63 marks. 	(2) ✓ calculating the number of sds from mean ✓ 16% ✓ 29 (3)

4.1	Since A and C are mutually exclusive, there is no intersection of A	√√ 0	
	and C \therefore P(A and C) = 0.		(2)
4.2	Since B and C are independent, $P(B \text{ and } C) = P(B).P(C)$.	\checkmark P(B and C) =	
	P(B and C) = (0,4)(0,2) = 0,08	P(B).P(C).	
		√ 0,08	
			(2)
4.3	Since A and B are independent, $P(A \text{ and } B) = P(A).P(B)$.	√ 0,12	
	P(A and B) = (0,3)(0,4) = 0,12		
	P(A or B) = P(A) + P(B) - P(A and B)	✓ formula	
	= 0.3 + 0.4 - 0.12	✓ substitution	
	= 0.58	√0.58	
		,	(4)
			[8]

5.1	Number of arrangements		
	= 7!	√7	
	= 5040	√7!	
			(2)
5.2	Number of arrangements		
	= 5!	√5	
	= 120	√5!	
			(2)
5.3	Number of arrangements	✓ 3!	
	$= 3! \times 5!$	✓ 5!	
	= 720	✓ answer	
			(3)
			[7]

$T_1 = -1$; $T_2 = 5$. $T_3 = T_1 + 3T_2 - 4 = -1 + 3(5) - 4 = 10$	✓ substitution✓ 10
$T_4 = T_2 + 3T_3 - 4 = 5 + 3(10) - 4 = 31$	✓ 31
$T_5 = T_3 + 3T_4 - 4 = 10 + 3(31) - 4 = 99$	√ 99
	[4]

8.1	$\hat{V} = 180^\circ - 120^\circ = 60^\circ$ [Opp angles of cyclic quad are supp]	✓ 60° ✓ reason	
			(2)
8.2	$\hat{KOU} = 2(60^\circ) = 120^\circ$ [Angle at centre = twice angle at circum.]	✓120°	
		✓ reason	
			(2)
8.3	$\hat{U} = \frac{180^\circ - 120^\circ}{100} = 30^\circ$ [Base angles of isosceles AUOS: OU = OK	√ 30°	
	$O_2 = \frac{1}{2} = 30$ [Base angles of isosceles ΔOOS , $OO = OK$	✓ reason	
	= radii]		(2)
8.4	$\hat{K}_1 = 48^\circ + 30^\circ = 78^\circ$ [tan-chord theorem]	√ 78°	
		✓ reason	
			(2)
8.5	$\hat{K}_{\circ} = 90^{\circ} - 78^{\circ} = 12^{\circ}$ [tan \perp radius]	✓12°	
		✓ reason	
			(2)
			[10]

9.1	Construct VZ and WY	✓ construction
	$\frac{\text{area } \Delta XVW}{\text{area } \Delta VWY} = \frac{XV}{VY} (\text{equal altitudes})$ $\frac{\text{area } \Delta XVW}{\text{area } \Delta WVZ} = \frac{XW}{WZ} (\text{equal altitudes})$ $\text{area } \Delta YVW = \text{area } \Delta VWZ (VW \parallel YZ)$ $\text{area } \Delta XVW \text{ is common}$	✓ $\frac{\text{area } \Delta XVW}{\text{area } \Delta VWY} = \frac{XV}{VY}$ ✓ $\frac{\text{area } \Delta XVW}{\text{area } \Delta WVZ} = \frac{XW}{WZ}$ ✓ $\frac{\text{area } \Delta YVW}{\text{area } \Delta YVW} = \text{area } \Delta VWZ$
	$\frac{XW}{XW} = \frac{XV}{XV}$	VW YZ
	WZ VY	✓ conclusion
		(6)

10 NSC – Memorandum

9.2.1	$\frac{\text{area } \Delta PRA}{\text{area } \Delta QRA} = \frac{PA}{QA} (\text{equal altitudes})$	$\checkmark \frac{\text{area } \Delta PRA}{\text{area } \Delta QRA} = \frac{PA}{QA}$	
	area $\triangle PRA$ 3	✓ answer	
	$\frac{1}{\text{area } \Delta \text{QRA}} = \frac{1}{5}$		(2)
9.2.2	$\frac{BD}{DQ} = \frac{CA}{AQ} (AR \parallel CB)$ $\frac{PC}{CA} = \frac{1}{2} (AR \parallel CB)$ $PC = y \text{ units}$ $CA = 2y \text{ units}$ $CQ = 5y \text{ units}$ $\frac{BD}{BQ} = \frac{2}{7}$	✓ $\frac{BD}{DQ} = \frac{CA}{AQ}$ ✓ reason ✓ $\frac{PC}{CA} = \frac{1}{2}$ ✓ $CQ = 5y$ units ✓ $\frac{BD}{BQ} = \frac{2}{5}$	(5)

10.1		
10.1	$A_2 = x$ ($\angle s \text{ in same seg}$)	\checkmark A ₂ = x
		✓ reason
	$\hat{D}_2 = x$ ($\angle s \text{ opp} = \text{sides}$)	$\checkmark \hat{\mathbf{D}}_2 = x$
		✓ reason
	$\hat{E}_2 = x$ (= chs = \angle s) or (\angle s in same seg)	$\checkmark \hat{E}_2 = x$
		✓ reason
	$\hat{A}_3 = x$ (tan-chord theorem)	$\checkmark \hat{A}_3 = x$
		✓ reason
		(8)
10.2	In \triangle ABE and \triangle DFE	
	1. $\hat{E}_2 = \hat{E}_1$ (= x)	$\checkmark \hat{E}_2 = \hat{E}_1$
	2. $\hat{D}_3 = 90^\circ$ (\angle s in semicircle)	$\checkmark \hat{D}_3 = 90^\circ$
	$B\hat{A}E = 90^{\circ}$ (tan \perp rad)	✓ reason
	$B\hat{A}E = \hat{D}$.	✓ $BÂE = 90^{\circ}$
	$\mathbf{A} \mathbf{A} \mathbf{D} \mathbf{E} = \mathbf{A} \mathbf{D} \mathbf{E} \mathbf{E} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{A} \mathbf{A} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{A} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} E$	✓ reason
	$\Delta ADE \parallel \Delta DFE (\angle \angle \angle)$ $DE AE$	
	$\frac{\Delta E}{EE} = \frac{AE}{EE}$ (Δs)	$\checkmark \frac{BE}{BE} = \frac{AE}{BE}$
	FE DE DE DE - AE EE	FE DE
	$\mathbf{DE}.\mathbf{DE} = \mathbf{AE}.\mathbf{FE}$	✓ ∆s
		(7)
10.3	$\hat{\mathbf{D}}_1 = 90^\circ - x (\angle \text{s on str line})$	$\checkmark \hat{\mathbf{D}}_1 = 90^\circ - x$
	$\hat{\mathbf{B}}_1 = 90^\circ - x (\angle \operatorname{sum} \Delta)$	✓ reason
	$\hat{B} = \hat{D}$	$\checkmark \hat{B}_1 = 90^\circ - x$
	$\boldsymbol{\nu}_1 - \boldsymbol{\nu}_1$	✓ reason
		(4)
		[19]

TOTAL: 100