basic education

Department:
Basic Education REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 100

This memorandum consists of 11 pages.

QUESTION 1

Time taken to complete task (in seconds)	23	21	19	9	15	22	17	14	21	18
Number of errors made	2	4	5	9	7	3	7	8	3	5

Scatter plot showing time taken to complete task and number of errors made

1.1	See scatter plot above.	$\checkmark \checkmark \checkmark$ all 10 points plotted correctly. 2 marks if 5-9 points are plotted correctly. 1 mark if $1-4$ points are plotted correctly.
1.2	When more time is taken to complete the task, the learners make fewer errors. OR When less time is taken to complete the task, the learners make more errors.	\checkmark explanation (1)
1.3	$\begin{array}{ll} a=14,71 & (14,705811 \ldots) \\ b=-0,53 & (-0,525464 \ldots) \\ \hat{y}=14,71-0,53 x \tag{4} \end{array}$	$\begin{aligned} & \checkmark \checkmark a \\ & \checkmark b \\ & \checkmark \text { equation } \end{aligned}$
1.4	$r=-0,96 \quad(-0,959074 \ldots)$	$\checkmark \checkmark$ answer (2)

1.5	$\hat{y} \approx 14,71-0,53(13)$ $\approx 7,82$ ≈ 8	\checkmark substitution \checkmark answer
1.6	There is a strong negative relationship between the variables.	\checkmark strong negative (2)
[13]		

QUESTION 2

2.1	The bar graph shows a significant decrease in the number of rhino killed in 2012. This creates the impression that there is no crisis in the number of rhino killed by poachers. Instead, it suggests that the problem is under control.	\checkmark no crisis
2.2	The first two bars show the number of rhino killed in a full year. The bar for 2012 reflects the number of rhino killed in the first 113 days of the year. Therefore, this graph cannot be used to make a comparison of the number of rhinos killed each year.	$\checkmark 2012$ bar is not for a full year
2.3.1	You can use the existing figures for 2012 to project the total number of rhinos that will be killed in 2012. If the rate at which rhinos are killed remains constant for the year, then $\frac{168}{113} \times 365=543$ rhino will be killed in 2012. OR You can calculate the number killed per day and represent this information on a graph.	\checkmark project total number for the year
	Number of rhinos killed each year OR	\checkmark correct scaling of y-axis \checkmark correct height of bars

QUESTION 3

3.1	Let the number of learners who were first measured be x. The total measure of all heights is $1,6 x$. Let the height of the last learner be y.	$\checkmark 1,6 x$
$\frac{1,6 x+1,45+1,63+y}{x+3}=1,6$ $1,6 x+3,08+y=1,6 x+4,8$ $y=1,72$	\checkmark equation	
OR Since the mean does not change $\frac{y+1,45+1,63}{3}=1,6$ $y=1,72$	$\checkmark \checkmark$ equation	

3.2 .1	$90=72+2(9)$ $\therefore 90$ lies at 2 standard deviations to the right of the mean. $\Rightarrow 48 \%$ of the students scored between 72 and 90 marks.	$\checkmark 2$ sd from mean $\checkmark 48 \%$
3.2 .2	$45=72-3(9)$	
$\therefore 45$ lies at 3 standard deviations to the left of the mean. $63=72-9$ $\therefore 63$ lies at 1 standard deviation to the left of the mean. The area between 1 sd and 3 sd is approximately 16%. $\therefore 16 \%$ of $184=$ approximately 29 students scored between 45 and 63 marks.	\checkmark calculating the number of sds from mean $\checkmark 16 \%$	
$\checkmark 29$	(3)	

QUESTION 4

QUESTION 5

5.1	Number of arrangements $=7!$ $=5040$	$\checkmark 7$ $\checkmark 7!$
5.2	Number of arrangements $=5!$ $=120$	\checkmark $\checkmark 5!$
5.3	Number of arrangements $=3!\times 5!$ $=720$	$\checkmark 3!$ $\checkmark 5!$ \checkmark answer

QUESTION 6

6.1		$\begin{aligned} & \checkmark x-5 \\ & \checkmark 13-x \\ & \checkmark x-3 \\ & \checkmark 29-x \\ & \checkmark 50-x \\ & \checkmark 32+x \end{aligned}$	(6)
6.2	$\begin{aligned} x-5+13-x+x-3+x+29-x+50-x+32+x+45 & =174 \\ x+161 & =174 \\ x & =13 \end{aligned}$	\checkmark addition $\checkmark 174$ \checkmark simplification	(3)
6.3.1	$\mathrm{P}(\mathrm{M} \text { and } \mathrm{P} \text { not } \mathrm{L})=\frac{37}{174}=0,21 \quad(0,21264 \ldots)$	$\begin{aligned} & \checkmark 37 \\ & \checkmark 174 \end{aligned}$	(2)
6.3.2	$\mathrm{P}($ only M or P or L$)=\frac{8+10+45}{174}=\frac{21}{58}=0,36$	$\begin{aligned} & \checkmark \sqrt{ } 8+10+45 \\ & \checkmark \text { answer } \end{aligned}$	(2) [13]

QUESTION 7

	$\mathrm{T}_{1}=-1 ; \mathrm{T}_{2}=5$.	\checkmark substitution
	$\mathrm{T}_{3}=\mathrm{T}_{1}+3 \mathrm{~T}_{2}-4=-1+3(5)-4=10$	
$\mathrm{~T}_{4}=\mathrm{T}_{2}+3 \mathrm{~T}_{3}-4=5+3(10)-4=31$		
$\mathrm{~T}_{5}=\mathrm{T}_{3}+3 \mathrm{~T}_{4}-4=10+3(31)-4=99$	$\checkmark 31$	
	$\checkmark 99$	

QUESTION 8

8.1	$\hat{\mathrm{V}}=180^{\circ}-120^{\circ}=60^{\circ} \quad$ [Opp angles of cyclic quad are supp]	$\checkmark 60^{\circ}$ \checkmark reason	(2)
8.2	$\mathrm{KÔU}=2\left(60^{\circ}\right)=120^{\circ} \quad$ [Angle at centre $=$ twice angle at circum.]	$\checkmark 120^{\circ}$ \checkmark reason	
			(2)
8.3	$\begin{aligned} \hat{\mathrm{U}}_{2}=\frac{180^{\circ}-120^{\circ}}{2}=30^{\circ} & {[\text { Base angles of isosceles } \Delta \mathrm{UOS} ; \mathrm{OU}=\mathrm{OK}} \\ & =\text { radii }] \end{aligned}$	$\checkmark 30^{\circ}$ \checkmark reason	
			(2)
8.4	$\hat{\mathrm{K}}_{1}=48^{\circ}+30^{\circ}=78^{\circ} \quad$ [tan-chord theorem]	$\begin{aligned} & \hline \checkmark 78^{\circ} \\ & \checkmark \text { reason } \end{aligned}$	
			(2)
8.5	$\hat{\mathrm{K}}_{2}=90^{\circ}-78^{\circ}=12^{\circ} \quad[\tan \perp$ radius $]$	$\begin{aligned} & \checkmark 12^{\circ} \\ & \checkmark \text { reason } \end{aligned}$	
			(2) $[10]$

QUESTION 9

9.1	Construct VZ and WY $\frac{\text { area } \triangle \mathrm{XVW}}{\text { area } \triangle \mathrm{VWY}}=\frac{\mathrm{XV}}{\mathrm{VY}} \quad$ (equal altitudes) $\frac{\text { area } \triangle \mathrm{XVW}}{\text { area } \triangle \mathrm{WVZ}}=\frac{\mathrm{XW}}{\mathrm{WZ}}$ (equal altitudes) area $\Delta \mathrm{YVW}=$ area $\Delta \mathrm{VWZ} \quad(\mathrm{VW} \\| \mathrm{YZ})$ area $\triangle \mathrm{XVW}$ is common $\frac{X W}{W Z}=\frac{X V}{V Y}$	\checkmark construction $\checkmark \frac{\text { area } \triangle \mathrm{XVW}}{\text { area } \triangle \mathrm{VWY}}=\frac{\mathrm{XV}}{\mathrm{VY}}$ $\checkmark \frac{\text { area } \Delta \mathrm{XVW}}{\text { area } \Delta \mathrm{WVZ}}=\frac{\mathrm{XW}}{\mathrm{WZ}}$ \checkmark area $\triangle \mathrm{YVW}=$ area $\Delta \mathrm{VWZ}$ \checkmark VW $\\|$ YZ \checkmark conclusion

9.2.1	$\frac{\text { area } \triangle \mathrm{PRA}}{\text { area } \triangle \mathrm{QRA}}=\frac{\mathrm{PA}}{\mathrm{QA}} \quad$ (equal altitudes) $\begin{equation*} \frac{\text { area } \triangle \mathrm{PRA}}{\text { area } \triangle \mathrm{QRA}}=\frac{3}{5} \tag{2} \end{equation*}$	$\checkmark \frac{\text { area } \triangle \mathrm{PRA}}{\text { area } \triangle \mathrm{QRA}}=\frac{\mathrm{PA}}{\mathrm{QA}}$ \checkmark answer		
9.2.2	$\begin{aligned} & \frac{\mathrm{BD}}{\mathrm{DQ}}=\frac{\mathrm{CA}}{\mathrm{AQ}} \quad(\mathrm{AR} \\| \mathrm{CB}) \\ & \frac{\mathrm{PC}}{\mathrm{CA}}=\frac{1}{2} \quad(\mathrm{AR} \\| \mathrm{CB}) \\ & \mathrm{PC}=y \text { units } \\ & \mathrm{CA}=2 y \text { units } \\ & \mathrm{CQ}=5 y \text { units } \\ & \frac{\mathrm{BD}}{\mathrm{BQ}}=\frac{2}{7} \end{aligned}$	$\checkmark \frac{\mathrm{BD}}{\mathrm{DQ}}=\frac{\mathrm{CA}}{\mathrm{AQ}}$ \checkmark reason $\checkmark \frac{\mathrm{PC}}{\mathrm{CA}}=\frac{1}{2}$ $\checkmark \mathrm{CQ}=5 y$ units $\checkmark \frac{\mathrm{BD}}{\mathrm{BQ}}=\frac{2}{5}$		
		(5) [13]		

QUESTION 10

10.1	$\hat{\mathrm{A}}_{2}=x$ $(\angle \mathrm{~s}$ in same seg $)$ $\hat{\mathrm{D}}_{2}=x$ $(\angle \mathrm{~s} \mathrm{opp}=$ sides $)$ $\hat{\mathrm{E}}_{2}=x$ $(=$ chs $=\angle \mathrm{s})$ or $(\angle \mathrm{s}$ in same seg $)$ $\hat{\mathrm{A}}_{3}=x$ $($ tan - chord theorem $)$	$\checkmark \hat{A}_{2}=x$ \checkmark reason $\checkmark \hat{\mathrm{D}}_{2}=x$ \checkmark reason $\checkmark \hat{\mathrm{E}}_{2}=x$ \checkmark reason $\checkmark \hat{\mathrm{A}}_{3}=x$ \checkmark reason					
10.2	$\begin{array}{rll} \hline \text { In } \triangle \mathrm{ABE} \text { and } \triangle \mathrm{DFE} \\ 1 . & \hat{\mathrm{E}}_{2}=\hat{\mathrm{E}}_{1} & (=x) \\ \text { 2. } \hat{\mathrm{D}}_{3}=90^{\circ} & (\angle \mathrm{s} \text { in semicircle }) \\ & \mathrm{BABE}=90^{\circ} & (\tan \perp \mathrm{rad}) \\ \mathrm{BAE}=\hat{\mathrm{D}}_{3} & \\ \Delta \mathrm{ABE}\\|\\| \Delta \mathrm{DFE} & (\angle \angle \angle) \\ \frac{\mathrm{BE}}{\mathrm{FE}}=\frac{\mathrm{AE}}{\mathrm{DE}} \quad(\\| \\| \Delta \mathrm{s}) \\ \mathrm{BE} \cdot \mathrm{DE}=\mathrm{AE} \cdot \mathrm{FE} & \end{array}$	$\checkmark \hat{E}_{2}=\hat{E}_{1}$ $\checkmark \hat{D}_{3}=90^{\circ}$ \checkmark reason \checkmark BÂE $=90^{\circ}$ \checkmark reason $\checkmark \frac{\mathrm{BE}}{\mathrm{FE}}=\frac{\mathrm{AE}}{\mathrm{DE}}$ $\checkmark\|\|\mid \Delta s$					
10.3	$\begin{aligned} & \hat{\mathrm{D}}_{1}=90^{\circ}-x \quad(\angle \text { s on str line }) \\ & \hat{\mathrm{B}}_{1}=90^{\circ}-x \quad(\angle \text { sum } \Delta) \\ & \hat{\mathrm{B}}_{1}=\hat{\mathrm{D}}_{1} \end{aligned}$	$\checkmark \hat{D}_{1}=90^{\circ}-x$ \checkmark reason $\checkmark \hat{\mathrm{B}}_{1}=90^{\circ}-x$ \checkmark reason	(7)				
			$\begin{array}{r} (4) \\ {[19]} \end{array}$				

