## basic education

Department:
Basic Education REPUBLIC OF SOUTH AFRICA

## NATIONAL SENIOR CERTIFICATE

## GRADE 12



MARKS: 100

This memorandum consists of 11 pages.

## QUESTION 1

| 1.1 | Mean <br> $=\frac{3,2+3,2+3,2+4,2+4,5+4,9+8,3+9,5+11,7+12,2+12,5}{11}$ <br> $=\frac{77,4}{11}$ <br> $=7,03$ <br> Median $=4,9$ <br> Mode $=2,3$ |  |  |
| :--- | :--- | :--- | :--- |
| 1.2 | Mode <br> This is the lowest value and will indicate that the increases are <br> very poor. | $\checkmark$ Mean <br> $\checkmark$ Median <br> $\checkmark$ Mode | $(3)$ |
| 1.3 | Mean. <br> This is the highest value and can be used to indicate that <br> increases are good. | $\checkmark$ Mean <br> $\checkmark$ Reason |  |

## QUESTION 2

| 2.1 | $\sigma=\frac{90-65}{2}$ <br> $\sigma=12,5$ | $\checkmark$ method |
| :--- | :--- | :--- |
|  | University A:  <br> $78-65=13$  <br>  Her result lies just over 1 standard deviation from the mean. <br>  University B: <br>  $\bar{x}+\sigma=54$ <br>  $\bar{x}+2 \sigma=59$ <br>  Her result lies just over 2 standard deviations from the mean. <br>  Her result for University B is better. | $\checkmark 1$ sd from the <br> mean |
|  |  | $\checkmark 2$ sd from the <br> mean <br> $\checkmark$ |

## QUESTION 3

| 3.1 |  | $\checkmark \checkmark$ structure of the tree diagram <br> $\checkmark 63 \%$ Rain <br> $\checkmark 36 \%$ Fall <br> $\checkmark 64 \%$ Not fall <br> $\checkmark 88 \%$ Not Fall <br> (6) |
| :---: | :---: | :---: |
| 3.2 | $\begin{aligned} \mathrm{P}(\text { Not Fall }) & =\left(\frac{37}{100} \times \frac{88}{100}\right)+\left(\frac{63}{100} \times \frac{64}{100}\right) \\ & =\frac{407}{1250}+\frac{252}{625} \\ & =\frac{911}{1250} \\ & =0,7288 \end{aligned}$ | $\begin{aligned} & \checkmark \frac{37}{100} \times \frac{88}{100} \\ & \checkmark \frac{63}{100} \times \frac{64}{100} \\ & \checkmark \text { answer } \end{aligned}$ |
| 3.3 | $\begin{aligned} \mathrm{P}(\text { Dry } \& \text { Fall }) & =\frac{37}{100} \times \frac{12}{100} \\ & =\frac{111}{2500} \\ & =0,0444 \end{aligned}$ | $\checkmark \frac{37}{100} \times \frac{12}{100}$ <br> $\checkmark$ answer <br> (2) <br> [11] |

## QUESTION 4

| Average of trial <br> examination | 80 | 68 | 94 | 72 | 74 | 83 | 56 | 68 | 65 | 75 | 88 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Final examination mark | 72 | 71 | 96 | 77 | 82 | 72 | 58 | 83 | 78 | 80 | 92 |



| 4.4 | $r=0,74 \quad(0,7391817008 \ldots)$ |  <br> $\checkmark$ |
| :--- | :--- | ---: |
| 4.5 | $\hat{y}=25,38+0,71 x$ <br> $\hat{y}=25,38+0,71(75)$ <br>  <br> $=78,63 \%$ | $\checkmark$ <br> substitution <br> $\checkmark$ <br> answer <br> $(2)$ |
|  | [13] the original values of $a$ and $b$ then $\hat{y}=78,401$ |  |

## QUESTION 5

|  | Broken a limb | Not broken a limb | TOTAL |
| :--- | :---: | :---: | :---: |
| Male | 463 | $b$ | 782 |
| Female | $a$ | $c$ | $d$ |
| TOTAL | 913 | 617 | 1530 |


| 5.1 | $a=450$ <br> $b=319$ <br> $c=298$ <br> $d=748$ | $\checkmark$ answer for $a$ <br> $\checkmark$ answer for $b$ <br> $\checkmark$ answer for $c$ <br> $\checkmark$ answer for $d$ <br> (4) |
| :--- | :--- | :--- |
| 5.2 | P(Female who has not broken a limb) <br> $=\frac{298}{1530}$ <br> $=\frac{149}{765}$ | $\checkmark 298$ |
| 5.3 | P(Female \& broken a limb) <br> $=\frac{450}{1530}$ <br> $=\frac{5}{17}$ <br> $=0,2941176471 \ldots$ <br> $=0,29$ <br> P (Female) $\times$ P(Broken a limb) <br> $=\frac{748}{1530} \times \frac{913}{1530}$ <br> $=0,29$ <br> The events of being female and having broken a limb are independent. <br> If a candidate answers not independent due to the fact that the answers are <br> not accurate to more than 2 decimal places, award full marks. | $\checkmark$(2) |

## QUESTION 6



## QUESTION 7

| 7.1 |  | $\checkmark \checkmark$ answers <br> (2) |
| :---: | :---: | :---: |
| 7.2 | $\begin{aligned} & T_{k+1}=T_{k}-(3)^{k} \\ & T_{1}=7 \\ & k \geq 1 \end{aligned}$ <br> OR $T_{k+1}=T_{k}-3(3)^{k-1} ; \quad T_{1}=7 ; \quad k \geq 1$ <br> OR $\begin{equation*} T_{k}=T_{k-1}-(3)^{k-1} ; \quad T_{1}=7 ; \quad k \geq 2 \tag{3} \end{equation*}$ | $\begin{aligned} & T_{k+1}=T_{k}-(3)^{k} \\ & \checkmark T_{1}=7 \\ & \checkmark k \geq 1 \end{aligned}$ |

## QUESTION 8



| 8. | $\begin{aligned} & \mathrm{AO}=\mathrm{OB} \\ & \mathrm{AO}=\mathrm{BC} \\ & \mathrm{OB}=\mathrm{BC} \\ & \hat{\mathrm{O}}_{1}=22^{\circ} \\ & \hat{\mathrm{B}}_{2}=44^{\circ} \\ & \hat{\mathrm{A}}=44^{\circ} \\ & A \hat{O} D=66^{\circ} \end{aligned}$ | (radii) <br> (given) $\begin{aligned} & \quad(\angle \mathrm{s} \text { opp }=\text { radii }) \\ & (\text { ext } \angle \Delta=\text { sum int opp) } \\ & (\angle \mathrm{s} \mathrm{opp}=\text { radii) } \\ & (\text { ext } \angle \Delta=\text { sum int opp) } \end{aligned}$ | $\checkmark \mathrm{S}$ <br> $\checkmark$ S <br> $\checkmark$ S/R <br> $\checkmark$ S <br> $\checkmark$ S <br> $\checkmark$ answer |
| :---: | :---: | :---: | :---: |

## QUESTION 9



| 9.1 | Join PO and OS |  | $\checkmark$ construction |
| :--- | :--- | :--- | :--- |
|  | Let $\hat{\mathrm{O}}_{1}=2 x$  <br>  $\hat{\mathrm{~T}}=x$ | $(\angle$ at circ centre $=2 \angle$ at circumference $)$ | $\checkmark \mathrm{S} / \mathrm{R}$ |
|  | $\hat{\mathrm{O}}_{2}=360^{\circ}-2 x$ | $(\angle \mathrm{~s}$ round a point $)$ |  |
|  | $\mathrm{R}=180^{\circ}-x$ <br> $\hat{\mathrm{~T}}+\hat{\mathrm{R}}=x+180^{\circ}-x$ <br>  <br> $=180^{\circ}$ | $(\angle$ at circ centre $=2 \angle$ at circumference $)$ | $\checkmark \mathrm{S}$ |
|  |  | $\checkmark \mathrm{S} / \mathrm{R}$ |  |



| 9.2.1(a) | $\begin{aligned} & \hat{\mathrm{D}}_{4}=\hat{\mathrm{C}} \\ & \hat{\mathrm{C}}=x \\ & \mathrm{DEB}=180^{\circ}-x \end{aligned}$ | $\begin{align*} & (\angle \mathrm{s} \text { opp }=\text { sides }) \\ & (\angle \operatorname{sum} \Delta) \\ & (\text { opp } \angle \text { cyclic quad supp }) \tag{3} \end{align*}$ | $\begin{aligned} & \checkmark \mathrm{S} / \mathrm{R} \\ & \checkmark \mathrm{~S} \\ & \checkmark \mathrm{~S} / \mathrm{R} \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| 9.2.1(b) | $\hat{\mathrm{A}}=180^{\circ}-2 x$ | $($ ext $\angle$ cyclic quad $=\operatorname{int}$ opp $\angle)$ | $\begin{aligned} & \checkmark \mathrm{S} \\ & \checkmark \mathrm{R} \end{aligned}$ <br> (2) |
| 9.2.2 | $\begin{aligned} & \hat{\mathrm{D}}_{1}+\hat{\mathrm{A}}=\hat{\mathrm{E}}_{1} \\ & \hat{\mathrm{D}}_{1}=x \\ & \hat{\mathrm{C}}=x \\ & \hat{\mathrm{D}}_{1}=\hat{\mathrm{C}}=x \\ & \mathrm{DE} \\| \mathrm{CB} \end{aligned}$ | (ext $\angle \Delta=$ sum int opp) <br> $(\angle \operatorname{sum} \Delta)$ OR proved above <br> ( $\operatorname{corres} \angle \mathrm{s}=$ ) | $\checkmark$ S/R <br> $\checkmark$ statement <br> $\checkmark$ Reason (3) |

## QUESTION 10




## QUESTION 11

| 11.1 | Let $\hat{A}_{1}=x$ <br> In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADT}$ $\begin{array}{lll} \text { 1. } & \hat{\mathrm{A}}_{1}=\hat{\mathrm{B}}_{2}=x & (\text { tan ch th }) \\ & \hat{\mathrm{B}}_{2}=\hat{\mathrm{A}}_{3}=x & (\mathrm{AC} \\| \mathrm{BD} \text { alt } \angle \mathrm{s}) \\ & \hat{\mathrm{A}}_{1}=\hat{\mathrm{A}}_{3} & \\ \text { 2. } & \hat{\mathrm{T}}_{3}=\mathrm{B} \hat{\mathrm{C}} \mathrm{~A} & (\text { ext } \angle \text { cyclic quad }) \\ \text { 3. } & \hat{\mathrm{B}}_{1}=\hat{\mathrm{D}}_{1} & \left(3^{\text {rd }} \angle \text { on triangle }\right) \end{array}$ <br> 1. | $\checkmark$ statement <br> $\checkmark$ reason <br> $\checkmark$ statement <br> $\checkmark$ statement <br> $\checkmark$ reason <br> $\checkmark$ statement |
| :---: | :---: | :---: |
| 11.2 |  | $\checkmark$ S/R <br> $\checkmark$ S/R <br> $\checkmark$ Reason <br> (3) <br> $\checkmark$ S/R <br> $\checkmark$ S/R <br> $\checkmark$ Reason <br> $\checkmark$ S/R <br> $\checkmark$ S/R <br> $\checkmark$ Reason |
| 11.3 | In $\triangle \mathrm{APT}$ and $\triangle \mathrm{TPD}$ <br> 1. $\hat{\mathrm{P}}$ is common. <br> 2. $\hat{\mathrm{T}}_{4}=\hat{\mathrm{A}}_{1} \quad$ (proven) <br> 3. $\quad \mathrm{ATP}=\hat{\mathrm{D}}_{2} \quad\left(3^{\text {rd }} \angle\right.$ on triangle $)$ <br> $\Delta \mathrm{APT}\|\|\mid \operatorname{TPD}(\angle \angle \angle)$ | $\checkmark$ S/R <br> $\checkmark$ S/R $\checkmark S$ |


| 11.4 | $\frac{\mathrm{AP}}{\mathrm{PT}}=\frac{\mathrm{PT}}{\mathrm{PD}} \quad(\triangle \mathrm{APT} \\|\| \| \Delta \mathrm{TPD})$ | statement <br> $\checkmark$ reason |
| :--- | :--- | :--- |
|  | $\mathrm{AP} \cdot \mathrm{PD}=\mathrm{PT} . \mathrm{PT}$ | $\checkmark \mathrm{DP}=\frac{1}{3} \mathrm{AP}$ |
|  | $\mathrm{AP} \cdot \frac{1}{3} \mathrm{AP}=\mathrm{PT}^{2}$ | $\checkmark$ substitution |
| $\mathrm{AP}^{2}=3 \mathrm{PT}^{2}$ | (4) |  |
|  |  | $[16]$ |

