

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P3

FEBRUARY/MARCH 2011

MEMORANDUM

MARKS: 100

1

This memorandum consists of 11 pages.

Copyright reserved

Please turn over

1.1	Mean		
	3,2+3,2+3,2+4,2+4,5+4,9+8,3+9,5+11,7+12,2+12,5		
	=		
	_ 77,4		
	$-\frac{11}{11}$		
	= 7.03	✓ Mean	
	$M_{\text{adian}} = 4.0$	✓ Median	
	Mcutal = 4,9	✓ Mode	
	Mode = 2,3		(3)
1.2	Mode	✓ mode	
	This is the lowest value and will indicate that the increases are	✓ reason	
	very poor.		(2)
1.3	Mean.	✓ Mean	
	This is the highest value and can be used to indicate that	✓ Reason	
	increases are good.		(2)
			[7]

2.1	$\sigma = \frac{90-65}{100}$	✓ method
	$\sigma = \frac{2}{2}$ $\sigma = 12,5$	✓ answer (2)
2.2	University A:	
	78 - 65 = 13	
	Her result lies just over 1 standard deviation from the mean.	\checkmark 1 sd from the mean
	University B:	
	$\overline{x} + \sigma = 54$	
	$\overline{x} + 2\sigma = 59$	
	Her result lies just over 2 standard deviations from the mean.	✓ 2 sd from the mean
	Her result for University B is better.	✓ University B. (3)
		[5]

3.1	36% Fall (Rain & Fall)	✓✓ structure of the tree diagram
	63% 64%	 ✓ 63% Rain ✓ 36% Fall
	Rain (Rain & Not Fall) Not Fall 37% 12% Fall (No Rain & Fall) No Rain	✓ 64% Not fall
	(No Rain & Not Fall) Not Fall	✓ 88% Not Fall (6)
3.2	P(Not Fall) = $\left(\frac{37}{100} \times \frac{88}{100}\right) + \left(\frac{63}{100} \times \frac{64}{100}\right)$ = $\frac{407}{1250} + \frac{252}{625}$	✓ $\frac{37}{100} \times \frac{88}{100}$ ✓ $\frac{63}{100} \times \frac{64}{100}$
	$=\frac{911}{1250} = 0,7288$	\checkmark answer (3)
3.3	P(Dry & Fall) = $\frac{37}{100} \times \frac{12}{100}$ = $\frac{111}{2500}$	$\checkmark \frac{37}{100} \times \frac{12}{100}$ $\checkmark \text{ answer}$ (2)
	= 0,0444	[11]

4 NSC – Memorandum

Average of trial examination	80	68	94	72	74	83	56	68	65	75	88
Final examination mark	72	71	96	77	82	72	58	83	78	80	92

4.4	r = 0,74 (0, 7391817008)	$\checkmark \checkmark$ answer (2)
4.5	$\hat{y} = 25,38 + 0,71x$	\checkmark
	$\hat{\mathbf{v}} = 25.38 \pm 0.71(75)$	substitution
	- 79 62 0/	✓ answer
	= /8,03 %	(2)
		[13]
	If the original values of a and b then $y = 78,401$	

	Broken a limb	Not broken a limb	TOTAL
Male	463	b	782
Female	а	С	d
TOTAL	913	617	1 530

-		
5.1	a = 450	\checkmark answer for <i>a</i>
	b = 319	\checkmark answer for <i>b</i>
	c = 298	✓ answer for c
	d = 748	\checkmark answer for <i>d</i>
		(4)
5.2	P(Female who has not broken a limb)	
	298	✓ 298
	$=\frac{1}{1530}$	
	149	
	$=\frac{119}{765}$	✓ answer
	705	(2)
5.3	P(Female & broken a limb)	
	$-\frac{450}{1}$	<u>√</u> <u>463</u>
	1530	1530
	5	
	$ =\frac{1}{17}$	
	-0.2941176471	$\checkmark\checkmark$
		782 913
		$\overline{1530}^{1}\overline{1530}$
	$P(Female) \times P(Broken a limb)$	
	$=\frac{748}{3}\times\frac{913}{913}$	✓ independent
	1530 1530	(4)
	= 0,29	[10]
	The events of being female and having broken a limb are independent.	
	If a candidate answers not independent due to the fact that the answers are	
	not accurate to more than 2 decimal places, award full marks.	

6.1	Number of different ways the shirts and trousers can be arranged = (7 + 4)! = 11! = 39 916 800	✓ 11 ✓ 11!	(2)
6.2	Number of ways so that the shirts are together and trousers are together = 7!.4!.2 = 241 920	$\checkmark 7!$ $\checkmark 4!$ $\checkmark 2$	(3)
6.3	P(Shirt at beginning and trouser at the end) = $\frac{9! \times 4 \times 7}{11!}$ = $\frac{14}{55}$	✓ × 4 × 7 ✓ 9! ✓ 11! ✓ answer	(4) [9]

7.1	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	✓✓ answers (2)
	- 113; - 356	
7.2	$T_{k+1} = T_k - (3)^k$	√
	$T_1 = 7$	$T_{k+1} = T_k - (3)^k$
	$k \ge 1$	$\checkmark T_1 = 7$
	OR $T_{k+1} = T_k - 3(3)^{k-1}; T_1 = 7; k \ge 1$	$\checkmark k \ge 1$
	OR	(3)
	$T_k = T_{k-1} - (3)^{k-1}; T_1 = 7; k \ge 2$	[0]

8.	AO = OB	(radii)	✓ S	
	AO = BC	(given)		
	OB = BC		✓ S	
	$\hat{O}_1 = 22^\circ$	$(\angle s \text{ opp} = \text{radii})$	\checkmark S/R	
	$\hat{B}_2 = 44^{\circ}$	$(ext \angle \Delta = sum int opp)$	v 5	
	$\hat{A} = 44^{\circ}$	(∠s opp = radii)	✓ S	
	$A\hat{O}D = 66^{\circ}$	$(ext \angle \Delta = sum int opp)$	✓ answer	
		· · · · · · · · · · · · · · · · · · ·		[5]

9.1	Join PO and OS		✓ construc	tion
	Let $\hat{O}_1 = 2x$			
	$\hat{\mathbf{T}} = x$	$(\angle$ at circ centre = 2 \angle at circumference)	✓ S/R	
	$\hat{O}_2 = 360^\circ - 2x$	$(\angle s \text{ round a point})$	✓ S	
	$\hat{\mathbf{R}} = 180^{\circ} - x$	$(\angle$ at circ centre = 2 \angle at circumference)	✓ S/R	
	$\hat{\mathbf{T}} + \hat{\mathbf{R}} = x + 180^\circ - x$		✓ S	
	=180°			(5)

9.2.1(a)	$\hat{D}_4 = \hat{C}$	$(\angle s \text{ opp} = sides)$	✓ S/R
	$\hat{\mathbf{C}} = x$	$(\angle \operatorname{sum} \Delta)$	✓ S ✓ S/R
	$\hat{\text{DEB}} = 180^\circ - x$	(opp \angle cyclic quad supp)	(3)
9.2.1(b)	$\hat{A} = 180^{\circ} - 2x$	(ext \angle cyclic quad = int opp \angle)	✓ S
			✓ R (2)
9.2.2	$\hat{\mathbf{D}}_1 + \hat{\mathbf{A}} = \hat{\mathbf{E}}_1$	$(ext \angle \Delta = sum int opp)$	✓ S/R
	$\hat{\mathbf{D}}_1 = x$		
	$\hat{\mathbf{C}} = x$	$(\angle \operatorname{sum} \Delta)$ OR proved above	✓ statement
	$\hat{\mathbf{D}}_1 = \hat{\mathbf{C}} = x$		Descen
	DE CB	(corres $\angle s =$)	• Keason (3)
			[13]

10.1	EG_24 (DE	EG)	✓ S/R	
	$\frac{1}{48} = \frac{1}{36} \qquad \text{(DE)}$	ru)		
	$EG = \frac{48 \times 24}{24}$		√ answer	
	36		• allswel	(2)
10.2	EG = 32 cm			(-)
10.2	$\frac{BC}{DE} = \frac{AC}{AE}$		• statemen	it
	DE AE		$\checkmark\checkmark$	
	$BC = \frac{120 \times 40}{40}$		substitutio	n
	48 = 100 cm		✓ answer	
	– 100 cm			(4)
	OR			
	AB - AC			
	AD AE			
	$AB = \frac{120 \times 36}{120 \times 36}$		6.0	
	48		✓ S	
	AB = 90		✓ S	
	$\Delta ABC \parallel \Delta ADE$	$(\angle \angle \angle)$	~	
	$\frac{DC}{DE} = \frac{AD}{AD}$	(sides in proportion)	√ 90	
	90×40		✓ answer	
	$BC = \frac{36}{36}$			(4)
	BC = 100 cm			
	OR		6 -	
	$\Delta ABC \parallel \Delta ADE$	$(\angle \angle \angle)$	✓ S	
	$\frac{BC}{DE} = \frac{AC}{AE}$	(sides in proportion)	√ S	
	DE AE 120×40			
	$BC = \frac{120 \times 40}{36}$		✓ substitut	ion
	BC = 100 cm		✓ answer	
				(4)
				נטן

Copyright reserved

Please turn over

QUES	STION 11		
	C $\begin{pmatrix} 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$		
11.1	Let $\hat{A}_1 = x$		
	In $\triangle ABC$ and $\triangle ADT$ $\hat{A} = \hat{B} = r$ (tan ch th)	✓ statement	
	$\hat{B}_2 = \hat{A}_2 = x$ (dan en th) $\hat{B}_2 = \hat{A}_2 = x$ (AC BD alt \neq s)	✓ reason ✓ statement	
	$\hat{A}_{2} = \hat{A}_{2}$	statement	
	2. $\hat{T}_2 = \hat{BCA}$ (ext \angle cyclic quad)	✓ statement	
	3. $\hat{B}_1 = \hat{D}_1$ (3 rd \angle on triangle)	reason	
	$\Delta ABC \parallel \Delta ADT \qquad (\angle \angle \angle)$	✓ statement	(6)
			(0)
11.2	$\hat{A}_1 = \hat{C}_2 = x$ (tan ch th)	\checkmark S/R \checkmark S/R	
	$T_1 = C_2 = x (AC \parallel BD; alt \angle s)$		
	$\therefore \mathbf{T}_1 = \mathbf{A}_1 = \mathbf{x}$		
	$\hat{\Gamma}_4 = x$ (vert opp angles) $\hat{T}_4 = \hat{A}$ (-x)	✓ Reason	
	PT is a tangent (conv tan ch th)		(3)
	OP.		
	$\hat{A}_1 = \hat{B}_2 = \hat{A}_2 = x$ (AC BT)	✓ S/R	
	$\hat{A}_3 = \hat{T}_1 = \hat{T}_4 = x$ ($\angle s$ in same segment)	✓ S/R	
	$\hat{A}_1 = \hat{T}_4 = x$		
	PT is a tangent (conv tan ch th)	✓ Reason	(2)
	OR		(3)
	$\hat{B}_1 = \hat{T}_2$ ($\angle s \text{ in same seg}$)	\checkmark S/R \checkmark S/R	
	$\hat{\mathbf{B}}_1 = \hat{\mathbf{D}}_1 \qquad (\Delta \mathbf{s})$	· 5/1	
	$\hat{\mathbf{D}}_1 = \hat{\mathbf{T}}_2$	✓ Reason	
	PT is a tangent (conv tan ch th)	i iteuson	(3)
11.3	In $\triangle APT$ and $\triangle TPD$		
	1. P is common. 2. $\hat{T} = \hat{A}$ (proven)	\checkmark S/R	
	3 $\hat{ATP} = \hat{D}$, (3 rd / on triangle)		
	$\Delta APT \parallel \Delta TPD (\angle \angle \angle)$	✓ S	
			(3)

11.4	AP PT (AADT III ATDD)	✓ statement
	$\left \frac{1}{\text{PT}}\right = \frac{1}{\text{PD}} \qquad (\Delta APT \parallel \Delta TPD)$	✓ reason
	AP.PD = PT.PT	
	$AP.\frac{1}{3}AP = PT^2$	✓ DP = $\frac{1}{3}$ AP
	$AP^2 = 3PT^2$	\checkmark substitution
		(4)
		[16]

TOTAL: 150