education

Department: Education REPUBLIC OF SOUTH AFRICA

NATIONAL
 SENIOR CERTIFICATE

GRADE 12

This memorandum consists of 25 pages.

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 1

1.1.1	$\begin{align*} & x(x-1)=30 \\ & x^{2}-x=30 \\ & x^{2}-x-30=0 \\ & (x-6)(x+5)=0 \\ & x=6 \text { or } x=-5 \tag{3} \end{align*}$ If implied as equation : No penalty If there is no equals sign or the equation is not $=0$: No penalty If $x=6$ is answer by inspection : $1 / 3$ Both correct answers no calculation : 1 / 3 OR $\begin{align*} x(x-1) & =30 \\ x^{2}-x & =30 \\ x^{2}-x-30 & =0 \\ x & =\frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(-30)}}{2(1)} \\ & =\frac{1 \pm \sqrt{121}}{2} \\ & =\frac{1 \pm 11}{2} \\ x=6 \text { or } x & =-5 \tag{3} \end{align*}$	\checkmark simplification (multiplying out brackets) \checkmark factors \checkmark both answers \checkmark simplification (multiplying out brackets) \checkmark substitution into formula \checkmark both answers (ca)
1.1.2	$\begin{aligned} & \begin{array}{l} 3 x^{2}-5 x+1=0 \\ a=3 \quad b=-5 \quad c=1 \\ x \end{array}=\frac{-(-5) \pm \sqrt{25-4(3)(1)}}{2(3)} \\ & \quad=\frac{5 \pm \sqrt{13}}{6} \\ & x=1,4 \quad \text { or } \quad x=0,2 \end{aligned}$ OR NOTE: Penalty 1 for incorrect rounding off in either answer Using calculator incorrectly: Max: 2 / 4 Answers will be $x=5,6$ or 4,4 Incorrect formula: $\max 1 / 4$ If $x=\frac{5 \pm \sqrt{37}}{6}$ then CA applies $x=1,8$ and $-0,2: \operatorname{Max} 3 / 4$ Correct answer only: 2 / 4 If factorising: $0 / 4$ If $x=\frac{5 \pm \sqrt{13}}{6}$ only, then $2 / 4$ If $x=5 \pm \frac{\sqrt{13}}{6}$ only, then $1 / 4$	\checkmark substitution into correct formula $\checkmark \sqrt{13}$ $\checkmark \checkmark$ values of x (CA with formula)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

$\begin{aligned} & \text { 1.1.2 } \\ & \text { contd } \end{aligned}$	$\begin{aligned} & 3 x^{2}-5 x+1=0 \\ & x^{2}-\frac{5}{3} x=-\frac{1}{3} \\ & x^{2}-\frac{5}{3} x+\frac{25}{36}=-\frac{1}{3}+\frac{25}{36} \\ & \left(x-\frac{5}{6}\right)^{2}=\frac{13}{36} \\ & x-\frac{5}{6}=\frac{ \pm \sqrt{13}}{6} \\ & x=\frac{5 \pm \sqrt{13}}{6} \\ & x=1,4 \quad \text { or } \quad x=0,2 \end{aligned}$	\checkmark correct method of completing the square $\checkmark \sqrt{13}$ $\checkmark \checkmark$ values of x (CA with formula)
1.1.3	$\begin{aligned} & -9 x^{2}+15 x-4<0 \\ & 9 x^{2}-15 x+4>0 \\ & (3 x-4)(3 x-1)>0 \end{aligned}$ $x<\frac{1}{3} \text { or } x>\frac{4}{3}$ Answer can be given as: $\quad x \in\left(-\infty ; \frac{1}{3}\right) \cup\left(\frac{4}{3} ; \infty\right)$ OR $\begin{aligned} & -9 x^{2}+15 x-4<0 \\ & (-3 x+4)(3 x-1)<0 \\ & x<\frac{1}{3} \text { or } x>\frac{4}{3} \end{aligned}$	\checkmark factors \checkmark correct inequality sign $\checkmark \frac{1}{3} ; \frac{4}{3}$ \checkmark answer (4) \checkmark factors \checkmark correct inequality sign $\checkmark \frac{1}{3} ; \frac{4}{3}$
	NOTE: If stop at factorisation: 2 / 4 If incorrect factors: CA applies 3 / 4 If answer : $\frac{1}{3}<x<\frac{4}{3}$ then $3 / 4$ If $x<\frac{1}{3}$ AND $x>\frac{4}{3}$ then $3 / 4$	\checkmark answer

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

1.2	$\begin{array}{ll} \hline \text { Substitute } x=y+3 \text { in } x^{2}-x y-2 y^{2}-7=0 \\ (y+3)^{2}-y(y+3)-2 y^{2}-7=0 & \\ y^{2}+6 y+9-y^{2}-3 y-2 y^{2}-7=0 & \\ 2 y^{2}-3 y-2=0 & \\ (2 y+1)(y-2)=0 & \begin{array}{l} \text { NOTE: } \\ \text { If the equation is changed } \\ \text { to a linear equation, then } \\ \text { max } 2 / 5 \end{array} \\ x=-\frac{1}{2} \text { or } y=2 & \begin{array}{l} \text { There are no penalties for } \\ \text { not putting }=0 . \end{array} \\ x=2 \frac{1}{2} \text { or } x=5 & \\ \text { OR } & \\ y=x-3 & \\ x^{2}-x(x-3)-2(x-3)^{2}-7=0 & \\ x^{2}-x^{2}+3 x-2\left(x^{2}-6 x+9\right)-7=0 & \\ 0=2 x^{2}-15 x+25 & \\ 0=(2 x-5)(x-5) & \\ x=2 \frac{1}{2} \text { or } x=5 & \\ y=-\frac{1}{2} \text { or } y=2 & \end{array}$	\checkmark substitution \checkmark standard form \checkmark factors \checkmark both y-values \checkmark both x-values \checkmark substitution \checkmark standard form \checkmark factors \checkmark both x-values \checkmark both y-values (5)
1.3	$\begin{aligned} & \frac{10^{\frac{2009}{2}}}{10^{\frac{2011}{2}}-10^{\frac{2007}{2}}} \\ & =\frac{10^{\frac{2009}{2}}}{10^{\frac{2007}{2}}(100-1)} \\ & =\frac{10}{99} \end{aligned}$ OR	\checkmark convert to indices \checkmark common factor \checkmark answer (3)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

1.3 contd	$\begin{aligned} & \frac{10^{1004} \sqrt{10}}{10^{1005} \sqrt{10}-10^{1003} \sqrt{10}} \\ & =\frac{10^{1004} \sqrt{10}}{\sqrt{10}\left(10^{1005}-10^{1003}\right)} \\ & =\frac{10^{1004}}{10^{1003}(100-1)} \\ & =\frac{10}{99} \end{aligned}$ OR $=\frac{\sqrt{10^{2009}}}{\sqrt{10^{2009} \cdot 10^{2}}-\sqrt{10^{2009} \cdot 10^{-2}}}=\frac{\sqrt{10^{2009}}}{\sqrt{10^{2009}}\left(10-10^{-1}\right)}$ OR $\begin{aligned} & \frac{\sqrt{10^{2000}} \sqrt{10^{9}}}{\sqrt{10^{2000} \cdot 10^{11}}-\sqrt{10^{2000} \cdot 10^{7}}} \\ & =\frac{\sqrt{10^{2000}} \sqrt{10^{9}}}{\sqrt{10^{2000}}\left(\sqrt{10^{11}}-\sqrt{10^{7}}\right)} \\ & =\frac{\sqrt{10^{9}}}{\sqrt{10^{11}}-\sqrt{10^{7}}} \\ & =\frac{10 \sqrt{10^{7}}}{100 \sqrt{10^{7}}-\sqrt{10^{7}}} \\ & =\frac{10 \sqrt{10^{7}}}{\sqrt{10^{7}}(100-1)} \\ & =\frac{10}{99} \end{aligned}$	\checkmark convert to indices \checkmark common factor \checkmark answer (3) \checkmark convert to indices \checkmark common factor \checkmark answer (3) \checkmark convert to indices \checkmark common factor \checkmark answer (3)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

	$\begin{aligned} & \frac{\sqrt{10^{2007}} \cdot \sqrt{10^{2}}}{\sqrt{10^{2007} \cdot 10^{4}}-\sqrt{10^{2007}}} \\ & =\frac{10 \sqrt{10^{2007}}}{\sqrt{10^{2007}}\left(\sqrt{10^{4}}-1\right)} \\ & =\frac{10}{100-1} \\ & =\frac{10}{99} \\ & \text { OR } \\ & \text { Let } x=2009 \\ & \frac{\sqrt{10^{x}}}{\sqrt{10^{x+2}}-\sqrt{10^{x-2}}} \\ & =\frac{10^{\frac{x}{2}}}{10^{\frac{x}{2}} \cdot 10-10^{\frac{x}{2}} \cdot 10^{-1}} \\ & =\frac{10^{\frac{x}{2}}}{10^{\frac{x}{2}}\left(10-10^{-1}\right)} \\ & =\frac{1}{10-\frac{1}{10}} \\ & =\frac{1}{\frac{99}{10}} \\ & =\frac{10}{99} \end{aligned}$	\checkmark convert to indices \checkmark common factor \checkmark answer (3) \checkmark convert to indices \checkmark common factor \checkmark answer (3)
1.4	$\begin{align*} & \left(1+\sqrt{2 x^{2}}\right)^{2}-\sqrt{8 x^{2}} \\ & =1+2 \sqrt{2 x^{2}}+2 x^{2}-\sqrt{4} \cdot \sqrt{2 x^{2}} \\ & =1+2 \sqrt{2 x^{2}}+2 x^{2}-2 \sqrt{2 x^{2}} \\ & =1+2 x^{2} \tag{3} \end{align*}$ OR $\begin{aligned} & \left(1+\sqrt{2 x^{2}}\right)^{2}-\sqrt{8 x^{2}} \\ & =1+\sqrt{8 x^{2}}+2 x^{2}-\sqrt{8 x^{2}} \\ & =1+2 \sqrt{2 x^{2}}+2 x^{2}-2 \sqrt{2 x^{2}} \\ & =1+2 x^{2} \end{aligned}$	\checkmark expansion/ multiplication $1+2 \sqrt{2 x^{2}}+2 x^{2}$ $\checkmark \sqrt{8 x^{2}}=2 \sqrt{2 x^{2}}$ \checkmark answer \checkmark expansion / multiplication $1+\sqrt{8 x^{2}}+2 x^{2}$ $\checkmark \sqrt{8 x^{2}}=2 \sqrt{2 x^{2}}$ \checkmark answer (3)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

1.4 contd	OR $\begin{aligned} & \left(1+\sqrt{2 x^{2}}\right)^{2}-\sqrt{8 x^{2}} \\ & =1+2 \sqrt{2} x+2 x^{2}-2 \sqrt{2} x \text { or }=1-2 \sqrt{2} x+2 x^{2}+2 \sqrt{2} x \\ & =1+2 x^{2} \end{aligned}$ Note: $\sqrt{x^{2}}=x$ if $x>0$ and $-x$ if $x<0$ $\begin{aligned} & \text { OR } \\ & \left(1+\sqrt{2 x^{2}}\right)^{2}-\sqrt{8 x^{2}} \\ & =\left(1+\left(2 x^{2}\right)^{\frac{1}{2}}\right)^{2}-8^{\frac{1}{2}} x \\ & =1+2 \cdot\left(2 x^{2}\right)^{\frac{1}{2}}+2 x^{2}-8^{\frac{1}{2}} x \\ & =1+2 \cdot 2^{\frac{1}{2}} x+2 x^{2}-8^{\frac{1}{2}} x \\ & =1+8^{\frac{1}{2}} x+2 x^{2}-8^{\frac{1}{2}} x \\ & =1+2 x^{2} \end{aligned}$ Note: $\sqrt{x^{2}}=x$ if $x>0$ and $-x$ if $x<0$ OR Let $2 x^{2}=y$ $\begin{aligned} & \left(1+\sqrt{2 x^{2}}\right)^{2}-\sqrt{8 x^{2}} \\ & =(1+\sqrt{y})^{2}-\sqrt{4 y} \\ & =1+2 \sqrt{y}+y-2 \sqrt{y} \\ & =1+y \\ & =1+2 x^{2} \end{aligned}$	\checkmark expansion / multiplication \checkmark simplification \checkmark answer \checkmark expansion / multiplication $1+2 \cdot\left(2 x^{2}\right)^{\frac{1}{2}}+2 x^{2}$ \checkmark simplification \checkmark answer (3)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 2

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 3

3.1	$\begin{array}{\|l} -1+2+5+\ldots \\ \text { OR } \\ -1 ; 2 ; 5 \\ \hline \end{array}$		\checkmark all three terms ${ }^{\text {(1) }}$
3.2	$\begin{aligned} & \mathrm{S}_{\mathrm{n}}=-1+2+5+8+\ldots \text { to } 100 \text { terms } \\ & \mathrm{S}_{\mathrm{n}}=\frac{n}{2}[2 a+(n-1) d] \\ & \mathrm{S}_{100}=\frac{100}{2}[2(-1)+(100-1)(3)] \\ &=50[-2+297] \\ &=14750 \\ & \text { OR } \\ & \mathrm{S}_{\mathrm{n}}=-1+2+5+8+\ldots \text { to } 100 \text { terms } \\ & \mathrm{T}_{100}=3(100)-4 \\ &=296 \\ & \mathrm{~S}_{\mathrm{n}}=\frac{n}{2}\left[T_{1}+T_{100}\right] \\ & S_{100}=\frac{100}{2}[-1+296] \\ &=50[295] \\ &=14750 \end{aligned}$ NOTE: If $S_{n}=-1+2+5+8+\ldots$ to 99 terms $\begin{aligned} \mathrm{S}_{\mathrm{n}} & =\frac{n}{2}[2 a+(n-1) d] \\ S_{99} & =\frac{99}{2}[2(-1)+(99-1)(3)] \\ & =\frac{99}{2}[-2+294] \\ & =14454 \end{aligned}$ Then 3 / 4	Answer only: 4 / 4 Apply consistent accuracy. This is the answer if series is $\begin{aligned} & 2+5+8+ \\ & \mathrm{S}_{\mathrm{n}}=2+5+8+\ldots \text { to } 100 \text { terms } \\ & \mathrm{S}_{\mathrm{n}}=\frac{n}{2}[2 a+(n-1) d] \\ & S_{100}=\frac{100}{2}[2(2)+(100-1)(3)] \\ & \quad=50[4+297] \\ & \quad=15050 \end{aligned}$ Then 4 / 4	\checkmark formula $\checkmark n=100$ \checkmark substitution \checkmark answer (4)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 4

4.1	The first differences are $1 ;-1 ;-3 ;-5 ; \ldots$ These form a linear pattern $\begin{align*} T_{n} & =1+(n-1)(-2) \\ & =3-2 n \tag{3} \end{align*}$ OR $T_{n}=-2 n+3$ ANSWER ONLY: Full marks	\checkmark pattern $\checkmark d=-2$ \checkmark answer
4.2	Between the $35^{\text {th }}$ and $36^{\text {th }}$ terms of the quadratic sequence lies the $35^{\text {th }}$ first difference $\begin{align*} 35^{\text {th }} \text { first difference } & =3-2(35) \\ & =-67 \tag{2} \end{align*}$ OR From the quadratic sequence: $P_{36}=-1158$ and $P_{35}=-1091$ $\begin{aligned} 35^{\text {th }} \text { first difference } & =-1158-(-1091) \\ & =-67 \end{aligned}$ If substitute and get $T_{35}=-2(35)+3=-67$ and $T_{36}=-2(36)+3=-69$, leading to the answer -2 then $\mathbf{1 / 2}$	\checkmark substitution of 35 into $T_{n}=-2 n+3$ \checkmark answer $\begin{aligned} & \checkmark P_{36}=-1158 \text { and } \\ & P_{35}=-1091 \end{aligned}$ \checkmark answer
4.3	Second difference of terms is -2 . $\begin{align*} & P_{n}=a n^{2}+b n+c \\ & a=-1 . \\ & 3 a+b=1 \\ & -3+b=1 \\ & b=4 \\ & a+b+c=-3 \\ & -1+4+c=-3 \tag{4}\\ & c=-6 \\ & P_{n}=-n^{2}+4 n-6 \end{align*}$ If the general term has been worked out correctly in 4.2 and not redone in 4.3 but answer just written down then 4 / 4	$\checkmark a=-1$ \checkmark substitution $\checkmark b=4$ $\checkmark c=-6$

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

4.3	
contd	Second difference of terms is -2. $P_{n}=a n^{2}+b n+c$ $a=-1$. $P_{0}=-6=c$ $P_{n}=-n^{2}+b n-6$ $-3=-(1)^{2}+(1) b-6$ $b=4$ $P_{n}=-n^{2}+4 n-6$ OR $P_{n}=\frac{n-1}{2}[2(f i r s t ~ f i r s t ~ d i f f e r e n c e)+(n-2)($ second difference $)]+P_{1}$ $P_{n}=\frac{n-1}{2}[2(1)+(n-2)(-2)]-3$ $P_{n}=n-1-(n-2)(n-1)-3$ $P_{n}=n-1-n^{2}+3 n-2-3$ $P_{n}=-n^{2}+4 n-6$ OR $P_{n}=(n-1) P_{2}-(n-2) P_{1}+2 n d$ difference $\frac{(n-1)(n-2)}{2}$ $P_{n}=(n-1)(-2)-(n-2)(-3)-2 \frac{(n-1)(n-2)}{2}$ $P_{n}=-2 n+2+3 n-6-n^{2}+3 n-2$ $P_{n}=-n^{2}+4 n-6$ OR $P_{n}=\frac{(n-2)(n-3) T_{1}-2(n-1)(n-3) T_{2}+(n-2)(n-1) T_{3}}{2}$ $P_{n}=\frac{\left(n^{2}-5 n+6\right)(-3)-2\left(n^{2}-4 n+3\right)(-2)+\left(n^{2}-3 n+2\right)(-3)}{2}$ $P_{n}=\frac{-3 n^{2}+15 n-18+4 n^{2}-16 n+12-3 n^{2}+9 n-6}{2}$ $P_{n}=-n^{2}+4 n-6$ OR

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 5

NOTE:

If a candidate answers in 5.1 that the growth is $18\left(\frac{8}{9}\right)^{n-1}=18\left(\frac{8}{9}\right)^{16}=2,73 \mathrm{~cm}$ then $1 / 2$
The answer for 5.2 as continued accuracy uses $n=10$,
Height after 10 years
$=150+\frac{18\left(1-\left(\frac{8}{9}\right)^{10}\right)}{1-\frac{8}{9}}=150+112,11 \ldots=262,11 \mathrm{~cm}$
This is awarded $3 / 3$ as consistent accuracy

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 6

6.1	$\begin{align*} & \frac{1}{2} x^{2}=-\frac{1}{x+1}+1 \\ & x^{2}(x+1)=-2+2(x+1) \\ & x^{3}+x^{2}=-2+2 x+2 \\ & x^{3}+x^{2}-2 x=0 \\ & x\left(x^{2}+x-2\right)=0 \\ & x(x+2)(x-1)=0 \\ & x=0 \text { or } x=-2 \text { or } x=1 \\ & y=0 \text { or } y=\frac{1}{2}(-2)^{2} \text { or } y=\frac{1}{2}(1)^{2} \\ & \quad y=2 \quad \text { or } y=\frac{1}{2} \\ & \mathrm{P}(-2 ; 2) \\ & \mathrm{Q}\left(1 ; \frac{1}{2}\right) \tag{6} \end{align*}$ OR $\frac{1}{2}(-2)^{2}=2 \quad \therefore(-2 ; 2)$ lies on $f(x)=\frac{1}{2} x^{2}$ $-\frac{1}{(-2)+1}+1=2 \quad \therefore(-2 ; 2)$ lies on $g(x)=-\frac{1}{x+1}+1$ $\therefore(-2 ; 2)$ is one of the points P, O or Q . From the graph it is P $\frac{1}{2}(1)^{2}=\frac{1}{2} \quad \therefore(-2 ; 2)$ lies on $f(x)=\frac{1}{2} x^{2} \therefore\left(1 ; \frac{1}{2}\right)$ is one of the points P, O or Q . From the graph it is Q $-\frac{1}{(1)+1}+1=\frac{1}{2} \quad \therefore \mathrm{Q}$ lies on $g(x)=-\frac{1}{x+1}+1$ $\therefore\left(1 ; \frac{1}{2}\right)$ is one of the points P, O or Q . From the graph it is Q	\checkmark equating \checkmark multiplication by LCD \checkmark standard form \checkmark common factor \checkmark factorisation of quadratic $\checkmark y$-answer answer $\mathrm{P}(-2 ; 2)$ answer $\mathrm{Q}\left(1 ; \frac{1}{2}\right)$ \checkmark substitution \checkmark substitution \checkmark P lies on f and g \checkmark substitution \checkmark substitution \checkmark Q lies on f and g
6.2	For $m>0, m=1$ the equation of the axis of symmetry is $y=x+c$. $\begin{aligned} & 1=(-1)+c \\ & c=2 \end{aligned}$ Therefore the equation is $y=h(x)=x+2$.	\checkmark gradient $m=1$ $\begin{equation*} \checkmark c=2 \tag{2} \end{equation*}$

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

6.3	The equation of the inverse of h is $\begin{aligned} & x=y+2 \\ & \therefore y=x-2 \end{aligned}$ Answer only: Full marks	\checkmark interchange x and y \checkmark answer
6.4	$\begin{array}{rlrl} g(x) & =-\frac{1}{x+1}+1=\frac{-1+x+1}{x+1}=\frac{x}{x+1} & \\ \text { LHS } & =\frac{x}{x+1}+\frac{\frac{1}{x}}{\frac{1}{x}+1} & & \text { RHS } \end{array}=\left(\frac{-x}{1-x}\right)\left(\frac{x-1}{(x-1)+1}\right)$ $=1$ NOTE: If substitute a value of x LHS = RHS and prove it, then 0 / 3 OR	\checkmark simplification of $g(x)$ \checkmark simplification of LHS \checkmark simplification of RHS
	$\begin{array}{ll} \text { LHS }=g(x)+g\left(\frac{1}{x}\right) & \text { RHS }=g(-x) \cdot g(x-1) \\ =-\frac{1}{x+1}+1-\frac{1}{\frac{1}{x}+1}+1 & =\left(-\frac{1}{-x+1}+1\right)\left(-\frac{1}{x-1+1}+1\right) \\ =-\frac{1}{x+1}+2-\frac{x}{1+x} & =\left(\frac{-1+1-x}{1-x}\right)\left(\frac{-1+x}{x}\right) \\ =-\frac{1+x}{1+x}+2 & =\left(\frac{x}{1-x}\right)\left(\frac{x-1}{x}\right) \\ =-1+2 & =1 \\ =1 & \\ \text { LHS }=\text { RHS } & \end{array}$	$\checkmark 2$ substitutions correct. NOTE: not just rewriting $g(x)$ again \checkmark simplification of LHS \checkmark simplification of RHS

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 7

7.1	$y \in[-3 ; 3]$ OR $-3 \leq y \leq 3$ OR y can be any value	NOTE: Notation incorrect : 0 / 1 $\mathrm{m}-3 \text { to } 3$	\checkmark answer (1)	
7.2	x-value is $7,37^{\circ}$ to $\mathrm{B}\left(82,63^{\circ} ; 0,38\right)$	$\text { left of } 90^{\circ}$ NOTE: Answer only : 3 / 3 x-value correct and y-value incorrect : $2 / 3$ x-value incorrect and y-value correct : $1 / 3$ If decimal part incorrect of x and y-value correct: 2 / 3	\checkmark method $\checkmark x$-value $\checkmark y$-value	(3)
7.3	$\begin{aligned} \text { Period } & =\frac{360^{\circ}}{3} \\ & =120^{\circ} \end{aligned}$	NOTE: Answer only : 2 / 2	$\begin{aligned} & \checkmark \frac{360^{\circ}}{3} \\ & \checkmark \text { answer } \end{aligned}$	(2)
7.4	$x=-180^{\circ}$		$\checkmark \checkmark$ answer	(2) [8]

QUESTION 8

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

$\begin{aligned} & 8.4 .2 \\ & \text { contd } \end{aligned}$	OR Sketch the graph of the inverse of f. Shift the graph of the inverse of f down by 5 units. OR Shift the graph 5 units LEFT. Reflect the graph over the line $y=x$.		
8.5		NOTE: Notation incorrect: Answer $x<8$: $2 / 3$ Answer only correct: 3 / 3	\checkmark multiplication by -1 \checkmark Notation \checkmark critical values (3) [10]

QUESTION 9

Penalise ONCE in question 9 for early rounding off.

9.1	$\begin{align*} & A=P(1-i)^{n} \\ & 15000=24000(1-0,18)^{n} \\ & 0,625=(0,82)^{n} \\ & n=\frac{\log 0,625}{\log 0,82} \\ & =2,37 \text { years } \tag{4} \end{align*}$	NOTE: If subs A and P incorrectly: Answer would be $n=-2,37$ years $\therefore n=2,37$ years: $2 / 4$ If subs A and P incorrectly: Answer would be $n=-2,37$ years: $\quad 1 / 4$ Answer $n=2,4$ years $4 / 4$ Answer rounded to 3 years and all calculations shown and $n=2,37$ shown: 4/4 Answer rounded to 3 years and $n=2,37$ not shown: 3 / 4	\checkmark substitution \checkmark simplification \checkmark application of logs \checkmark answer Incorrect formula: 0/4
9.2.1	$\begin{align*} & 130000\left(1+\frac{0,18}{12}\right)^{2} \\ & =130000(1,015)^{2} \tag{3}\\ & =\text { R } 133929,25 \end{align*}$	NOTE: -1 per error for incorrect substitution to a max of 2 marks	$\checkmark \checkmark$ substitution \checkmark answer Incorrect formula: 0/3

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

9.2.2(a)	$\begin{aligned} 133929,25 & =\frac{x\left[1-(1,015)^{-54}\right]}{0,015} \\ 2008,93875 & =x\left[1-(1,015)^{-54}\right] \\ x & =\mathrm{R} 3636,36 \end{aligned}$ OR $\begin{aligned} 133929,25\left(1+\frac{0,18}{12}\right)^{54} & =\frac{x\left[\left(1+\frac{0,18}{12}\right)^{54}-1\right]}{\frac{0,18}{12}} \\ 299255,2087 & =82,29517136 \ldots x \\ x & =\mathrm{R} 3636,36 \end{aligned}$ OR $\begin{aligned} 130000\left(1+\frac{0,18}{12}\right)^{56} & =\frac{x\left[\left(1+\frac{0,18}{12}\right)^{54}-1\right]}{\frac{0,18}{12}} \\ 299255,2087 & =82,29517136 \ldots x \\ x & =\mathrm{R} 3636,36 \end{aligned}$	$\begin{aligned} & \checkmark n=54 \\ & \checkmark \text { substitution of } \\ & 133 \text { 929,25 } \\ & \checkmark \text { answer } \\ & \checkmark n=54 \\ & \checkmark \text { substitution of } \\ & 133 \text { 929,25 } \\ & \checkmark \text { answer } \\ & \checkmark n=54 \\ & \checkmark \text { 130000 }\left(1+\frac{0,18}{12}\right)^{56} \\ & \checkmark \text { answer } \end{aligned}$
		(3)
9.2.2(b)	Total $=3636,36 \times 54$ $=$ R196 363,66\quadNOTE: Accept answer $=$ R 196	\checkmark answer (1)
9.2.3	$\begin{aligned} 130000 & =\frac{x\left[1-(1,015)^{-54}\right]}{0,015} \\ 1950 & =x\left[1-(1,015)^{-54}\right] \\ x & =\mathrm{R} 3529,68 \end{aligned}$ $\begin{align*} \text { Total payments } & =\text { R } 3529,68 \times 54 \\ & =\text { R } 190602,72 \tag{4} \end{align*}$ OR	$\begin{aligned} & \checkmark 130000 \\ & \checkmark i=0,015 \\ & \checkmark \text { answer 3529,68 } \\ & \checkmark \text { answer } \\ & \text { R } 190602,72 \end{aligned}$

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

$9.2 .3$ contd	$\begin{align*} & \begin{aligned} 130000\left(1+\frac{0,18}{12}\right)^{54} & =\frac{x\left[\left(1+\frac{0,18}{12}\right)^{54}-1\right]}{\frac{0,18}{12}} \\ 290475,5842 & =82,29517136 \ldots x \\ x & =\text { R } 3529,68 \end{aligned} \\ & \begin{aligned} \text { Total payments }= & \mathrm{R} 3529,68 \times 54 \\ = & \mathrm{R} \end{aligned} 190602,72 \end{align*}$ OR	$\checkmark 130000\left(1+\frac{0,18}{12}\right)^{54}$ $\checkmark i=0,015$ \checkmark answer 3529,68 \checkmark answer R 190 602,72 $\checkmark 130000\left(1+\frac{0,18}{12}\right)^{55}$ $\checkmark i=0,015$ \checkmark answer 3529,68 \checkmark answer R 190 602,72
9.2.4	$\begin{align*} & \text { R196 363,66 - R190 602,72 } \\ & \text { =R5 760,96 } \tag{1} \end{align*}$	\checkmark answer [16]

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 10

10.1	$\begin{aligned} f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\ & =\lim _{h \rightarrow 0} \frac{-2(x+h)^{2}+3-\left(-2 x^{2}+3\right)}{h} \\ & =\lim _{h \rightarrow 0} \frac{-2 x^{2}-4 x h-2 h^{2}+3+2 x^{2}-3}{h} \\ & =\lim _{h \rightarrow 0} \frac{h(-4 x-2 h)}{h} \\ & =\lim _{h \rightarrow 0}(-4 x-2 h) \\ & =-4 x \end{aligned}$ NOTE: Penalty 1 mark only for incorrect notation (lim missing or $=$ in incorrect place) Answer only: 0 / 5 Cannot give mark for answer if the answer is incorrect according to the working out, even if the answer is given as $-4 x$.	$\begin{aligned} & \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\ & \checkmark-2(x+h)^{2}+3 \end{aligned}$ \checkmark simplification \checkmark simplification \checkmark answer
10.2	$\begin{aligned} & y=x^{2}-\frac{1}{2 x^{3}} \\ & y=x^{2}-\frac{1}{2} x^{-3} \\ & \frac{d y}{d x}=2 x+\frac{3}{2} x^{-4} \end{aligned}$ OR $\frac{d y}{d x}=2 x+\frac{3}{2 x^{4}}$ OR $\frac{d y}{d x}=2 x-(-3) \frac{1}{2} x^{-4}$	$\begin{aligned} & \checkmark 2 x \\ & \checkmark+\frac{3}{2} x^{-4} \end{aligned}$ (2)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 11

11.1	$\begin{aligned} & 0=-x^{3}+x^{2}+8 x-12 \\ & x^{3}-x^{2}-8 x+12=0 \\ & (x-2)\left(x^{2}+x-6\right)=0 \\ & (x-2)(x-2)(x+3)=0 \\ & x=2 \text { or } x=-3 \end{aligned}$ x-intercepts are $(2 ; 0)$ and $(-3 ; 0)$ OR $\begin{aligned} & 0=-x^{3}+x^{2}+8 x-12 \\ & x^{3}-x^{2}-8 x+12=0 \\ & (x+3)\left(x^{2}-4 x+4\right)=0 \\ & (x+3)(x-2)(x-2)=0 \\ & x=2 \text { or } x=-3 \end{aligned}$ x-intercepts are $(2 ; 0)$ and $(-3 ; 0)$	\checkmark any one of factors \checkmark quadratic factor \checkmark linear factors $\checkmark \checkmark x$-answers
11.2	$\begin{gathered} f^{\prime}(x)=-3 x^{2}+2 x+8 \\ 0=3 x^{2}-2 x-8 \\ 0=(x-2)(3 x+4) \\ x=2 \text { or } x=-\frac{4}{3} \end{gathered}$ turning points are $(2 ; 0)$ and $\left(-\frac{4}{3} ;-\frac{500}{27}\right)$ $\text { OR } \quad(2 ; 0) \text { and }(-1,33 ;-18,52)$	$\begin{aligned} & \checkmark f^{\prime}(x)=0 \\ & \checkmark-3 x^{2}+2 x+8=0 \text { or } \\ & 3 x^{2}-2 x-8=0 \end{aligned}$ \checkmark factors $\checkmark x$-values $\checkmark y$-values
	NOTE: If $=0$ is omitted in 11.2: penalty 1 mark If not in coordinate form but coordinates implied: OK	

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

11.3		ndidate used function $=x^{3}-x^{2}-8 x+12$ max $1 / 3$ \checkmark shape $\checkmark y$-intercept \checkmark turning pts
11.4	$\begin{aligned} f^{\prime \prime}(x) & =0 & & f^{\prime \prime}(x) \\ 6 x-2 & =0 & \text { or } & -6 x+2 \end{aligned}=0$ $\begin{aligned} & x=\frac{2-\frac{4}{3}}{2} \\ & x=\frac{1}{3} \end{aligned}$ Note: If write down $f^{\prime \prime}(x)=6 x-2$ or $f^{\prime \prime}(x)=-6 x+2$ then $1 / 2$	\checkmark method \checkmark answer Answer only: Full marks
11.5	$(2 ;-3) \text { and }\left(-\frac{4}{3} ;-\frac{581}{27}\right)$ OR $(2 ;-3) \text { and }(-1,33 ;-21,52)$	$\checkmark \checkmark$ each answer (2) [17]

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 12

12.1	$s(0)=5(0)^{3}-65(0)^{2}+200(0)+100$		$\checkmark t=0$ \checkmark answer
	$\begin{equation*} =100 \text { metres } \tag{2} \end{equation*}$	NOTE: If subs $t=8$, then answer $=100$: $0 / 2$	answer Answer only: full marks
12.2	$\begin{aligned} s(t) & =5 t^{3}-65 t^{2}+200 t+100 \\ s^{\prime}(t) & =15 t^{2}-130 t+200 \\ s^{\prime}(4) & =15(4)^{2}-130(4)+200 \\ & =-80 \text { metres per minute } \end{aligned}$		$\checkmark s^{\prime}(t)=15 t^{2}-130 t+200$ \checkmark substitution $t=4$ \checkmark answer (-80)
	NOTE: If used average rate of change between $t=0$ and $t=4: 0 / 3$ If subs $t=4$ into $s(t): 0 / 3$		
12.3	The height of the car above sea level is decreasing at 80 metres per minute and the car is travelling downwards hence it is a negative rate of change.		\checkmark speed 80 metres per minute \checkmark downwards
	The vertical velocity of the car at $t=4$ is 80 metres per minute.		
	NOTE: Mark this CA even if answer to QUESTION 12.2 is completely inaccurate.		
12.4	$\begin{align*} s^{\prime}(t) & =15 t^{2}-130 t+200 \\ s^{\prime \prime}(t) & =30 t-130 \\ 130 & =30 t \\ t & =4,33 \text { minutes } \tag{3} \end{align*}$		$\begin{aligned} & \checkmark s^{\prime \prime}(t)=30 t-130 \\ & \checkmark s^{\prime \prime}(t)=0 \\ & \checkmark \text { answer } \end{aligned}$
	OR		
	$\begin{aligned} & t=\frac{-(-130)}{2(15)} \\ & t=4,3 \dot{3} \text { minutes } \end{aligned}$		

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 13

