

education

Department:
Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P3

NOVEMBER 2008

MEMORANDUM

MARKS: 100

This memorandum consists of 11 pages.

QUI	ESTION 1		
1.1	$T_1 = 2$; $T_n = T_{n-1} + 4$	$\begin{array}{c} \checkmark T_1 = 2 \\ \checkmark + 4 \end{array}$	
		✓ recursion used	(3)
1.2	$T_n = 2 + (n-1)4 = 4n - 2$	✓✓ formula in terms of	
			(2) [5]
QUI	ESTION 2		
2.1	Approximately 2 %	√√answer	(2)
2.2	Approximately 16 %	✓✓answer	(2)
2.3	No, since there are some employees (less than 2%) earn below R3 000,00. These employees will not live an acceptable lifestyle economically.	√√√answer	(3)
	OR		
	Yes, there is a fair distribution of salaries since the majority of the employees i.e. 68% earn a salary between R5 900 and R11 800 per month. Some employees will have more responsibilities or work longer hours and thus must be compensated accordingly. Less than 2% earn below R3 000,00.		
	2,0 cmm 5516 ii 165 000,000.		[7]

QUE	STION 3		
3.1	65% of 7 800 = 5 070	✓ ✓ answer (2)	
3.2	No. This is just the opinion of a small sample of the South African population. The view of the vast majority has not been heard. It is also not known whether the sample is representative of the population.	✓ no ✓ explanation - representative	
	The results of the survey are not valid for the following reasons: Only those who were watching this particular programme were able to respond. People who were not watching this programme were not even aware that such a survey had taken place. Respondents needed a cellphone to make response. The viewers who did not have a cellphone were unable to respond. Also, viewers who had cellphones but no airtime could not respond.	✓ explanation – not watching programme; no cellphone	
	compnones out no untiline could not respond.	(3) [5]	

QUESTION 4

4.1.1 11 students

✓answer (1)

4.1.2 Let N represent students reading the *National Geographic* magazine, G represent students reading the *Getaway* magazine and L represent students reading the *Leadership* magazine.

√ 6

√11

 \checkmark 21 - x

✓ 14 - x✓ other values (5)

4.1.3 21-x+x+14-x+9+14+10+6+11=80 85-x=80x=5 ✓ ✓ setting up equation

✓ simplification (3)

4.1.4 P(student reads at least two magazines) = $\frac{5+14+10+9}{80}$ = 0,475

✓ numerator

✓ divide by 80

✓answer (3)

4.2.1

P(smoke detected by device A or device B)

= P(smoke detected by A) + P(smoke detected by B) - P(smoke detected by both)

= 0.95 + 0.98 - 0.94

= 0.99

√ formula

✓ substitution of probabilities

✓answer

` '

(3)

✓answer (1)

[16]

4.2.2 P(smoke not detected) = 1 - 0.99 = 0.01

QUESTION 5		
5.1.1 The number of different meal combinations = $3 \times 4 \times 2 = 24$.	✓ multiplication rule ✓ answer	(2)
5.1.2 The number of different meal combinations that have chicken as main course = $3 \times 2 \times 2 = 12$	✓ multiplication rule ✓ answer	(2)
5.2.1 Any learner seated in any position in: $6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1$ = 720 different ways.	✓multiplication rule ✓answer	(2)
5.2.2 These 2 particular learners could be seated in 2 different ways. Now consider them to be a single group. This group and the four remaining learners will yield 5 objects which results in 5! = 120 different seating arrangements. Therefore these 2 particular learners could be seated together in 2 × 120 = 240 different ways.	✓ multiplication rule – 2 learners ✓ multiplication rule – 5 objects ✓ answer	(3) [9]

NOTE:

According to the National Curriculum Statement the solutions to data-handling problems should be done with the use of a calculator. The alternative to the calculator is to use the pen and paper method as indicated below.

QUESTION 6

6.1 & 6.3

✓✓ plotting points **√**labels

(5.3)

✓✓ line of least squares

(2)

(3)

By using a calculator : a = 29,226.2 (29.21542...)b = 0.89(0.886530...)

 \therefore equation of line of least squares is y = 29,22 + 0,89x

✓✓ calculating the value of a \checkmark calculating the value of b

ALTERNATIVE

	x	У	$(x-\overline{x})$	$(y-\overline{y})$	$(x-\overline{x})(y-\overline{y})$	$(x-\overline{x})^2$	$(y-\overline{y})^2$
	16	45	-14,1	-10,9	153,69	198,81	118,81
	36	70	5,9	14,1	83,19	34,81	198,81
	20	44	-10,1	-11,9	120,19	102,01	141,61
	38	56	7,9	0,1	0,79	62,41	0,01
	40	60	9,9	4,1	40,59	98,01	16,81
	30	48	-0,1	-7,9	0,79	0,01	62,41
	35	75	4,9	19,1	93,59	24,01	364,81
	22	60	-8,1	4,1	-33,21	65,61	16,81
	40	63	9,9	7,1	70,29	98,01	50,41
	24	38	-6,1	-17,9	109,19	37,21	320,41
Sum	301	559	0	0	639,1	720,9	1290,9
Mean	30,1	55,9					

 \checkmark calculating the value of b

 \checkmark calculating the value of a

Consider the equation of the least squares line to be $\hat{y} = a + bx$

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2} = \frac{639,1}{720,9} = 0,89$$
 (0,88653)

Using $\hat{y} = a + bx$ and \bar{x} and \bar{y} , 55.9 = a + (0.88653)(30.1) a = 29.22(29.21542516)

Therefore equation of line of least squares is y = 29,22 + 0,89x

6.4

$$y = 29,22 + (0,89)(22)$$
$$= 48,8$$

Therefore the employee who undergoes 22 hours of training should produce about 49 units.

✓ substituting 22

✓answer

(2)

6.5

$$s_y = \sqrt{\frac{\sum (y - \overline{y})^2}{n}} = \sqrt{\frac{1290.9}{10}} = 11.36$$

$$s_x = \sqrt{\frac{\sum (x - \overline{x})^2}{n}} = \sqrt{\frac{720.9}{10}} = 8,49$$

Using
$$b = r \frac{s_y}{s_x}$$
, we have $0.89 = r \frac{11.36}{8.49}$
 $r = 0.66$

6.6

There is a positive correlation between the hours of training and productivity levels. However, the value of r does not indicate a very strong relationship between hours of training and productivity levels. I would suggest that the manager look at the training programme and possibly revise it to meet the demands of the job.

of r (3)
(or if read from the calculator – full marks)

✓ positive

✓ advise to manager

(2) [**16**]

QUESTION 7

- 7.1.1 equal to twice the angle subtended by the same chord at the circumference.
- ✓ answer (1)
- 7.1.2 equal to the angle subtended chord in the alternate segment.
- ✓ answer (1)

7.1.3 supplementary.

✓ answer (1)

- 7.2.1 $\hat{D}_1 = \hat{B}_1 = 40^\circ$...(angle between tangent and chord ...)
- ✓ reason

 $\therefore \hat{D}_2 = \hat{B}_1 = 40^{\circ} \dots (CD = CB)$

✓ answer (2)

7.2.2 :. $\hat{C} = 180^{\circ} - (40^{\circ} + 40^{\circ})$ = 100°....(angle sum of triangle)

- ✓ answer

(1)

- 7.2.3 $\hat{A} = 180^{\circ} 100^{\circ}$ = 80° (Opposite angles of a cyclic quad are supp.)
- \checkmark answer (1)

7.2.4 $\hat{O}_1 = 2\hat{A} = 160^{\circ}$ (angle at the centre is twice...)

✓ answer ✓ reason

ALTERNATIVE

From 7.2.1
$$\hat{D}_2 = \hat{B}_1 = 40^{\circ}$$

$$\checkmark \hat{D}_3 = 10^{\circ}$$

Now
$$\hat{D}_3 = 90^{\circ} - (40^{\circ} + 40^{\circ}) = 10^{\circ}$$
 ... (tan \perp radius)

$$\checkmark \hat{O}_1 = 160^{\circ}$$

 $\therefore \hat{O}_1 = 180^{\circ} - (10^{\circ} + 10^{\circ}) = 160^{\circ} \qquad \dots \text{(sum of angles in triangles)}$

(2) [**9**]

(2)

DoE/November 2008

(3)

OUESTION 8

Let $\hat{Q}_3 = \hat{B} = x$... (angles opp equal sides, AQ = AB) 8.1

 $\checkmark \overset{\wedge}{\mathbf{Q}_3} = \overset{\wedge}{\mathbf{B}} = x$

 $\hat{Q}_3 = \hat{R}_1 = \hat{R}_2 = x$... (ext angle of cyclic quad...) and

 $\checkmark \stackrel{\land}{\mathbf{R}_1} = \stackrel{\land}{\mathbf{R}_2} = x$

(RA bisects \hat{R})

 $\hat{R}_2 = \hat{Q}_2 = x$... (angles in the same segment)

Now $\hat{Q}_2 = \hat{Q}_3 = x$

OR

 $\hat{Q}_{2} + \hat{Q}_{2} = \hat{R}_{1} + \hat{R}_{2}$ (ext angle of cyclic quad.)

but $\hat{Q}_{2} = \hat{R}_{2} = \hat{R}_{1}$ (angles in same segment, RA bisect...)

 $\therefore \hat{\mathbf{Q}}_3 = \hat{\mathbf{Q}},$

OR

 $\hat{Q}_{2} + \hat{Q}_{2} = \hat{R}_{1} + \hat{R}_{2}$ (ext angle cyclic quad.)

but $\hat{Q}_2 = \hat{R}$, (angles in same segment)

 $\Rightarrow \hat{Q}_3 = \hat{R}_1$

but $\hat{R}_1 = \hat{R}_2 = \hat{Q}_1$ (given)

 $\Rightarrow \hat{Q}_3 = \hat{Q}_2$

∴ AQ bisects PQB

✓ $\hat{R}_1 = \hat{B} = x$ ✓ isosceles triangle (2)

 $\hat{R}_1 = \hat{B} = x$ (from 8.1) 8.2

 \therefore TR = TB(sides opp equal angles)

 $\checkmark \hat{\mathbf{R}}_1 + \hat{\mathbf{R}}_2 = 2x$ $\checkmark \hat{\mathbf{A}}_1 = \hat{\mathbf{Q}}_3 + \hat{\mathbf{B}} = 2x$

 $T\hat{R}P = 2x$ (from above) 8.3

 $\hat{A}_1 = \hat{Q}_3 + \hat{B} = 2x$ (exterior angle of triangle)

And $\hat{P} = \hat{A}_1 = 2x$ (angles in the same segment) $= T\hat{R}P$

(3)

Copyright reserved

Please turn over

OUESTION 9

 $\hat{R}_1 = 90^{\circ}$... (angle in a semi-circle)

9.2 $\hat{P}_2 = 90^{\circ} - x$... (angle between radius and tangent) $\hat{S} = 90^{\circ} - \hat{P_2}$...(ext. angle of Triangle)(sum of angles of triangle) = $90^{\circ} - (90^{\circ} - x) = x$ $\therefore \hat{\mathbf{P}}_1 = \hat{\mathbf{S}} = \mathbf{x}$

9.3 $\hat{W}_2 = \hat{P}_1 = x$...(angles in the same segment)

Also $\hat{S} = x$... (proved 9.2) $\hat{\mathbf{W}}_2 = \hat{\mathbf{S}}$

∴ SRWT is a cyclic quad...(ext angle = int. opposite angle)

9.4 In \triangle QWR; \triangle QST $\hat{W}_2 = \hat{S} \dots$ (proved 9.3)

 $\stackrel{\wedge}{Q}_1$ is common $\stackrel{\wedge}{W} \stackrel{\wedge}{R} Q = \stackrel{\wedge}{T}_2$ (remaining angles) Δ QWR $\parallel \Delta$ QST (AAA)

 $9.5.1 \qquad \frac{TS}{RW} = \frac{QT}{QR} \quad \dots \dots \Delta QWR \mid\mid\mid \Delta QST$ 4TS = 16

 \therefore TS = 4 cm

9.5.2 $\frac{SQ}{WQ} = \frac{TS}{RW}$ $SQ = \frac{4 \times 5}{2} = 10 cm$ \therefore SR = SQ - RQ =6 cm

✓ angle in a semi-circle (1)

 $\checkmark \stackrel{\land}{P}_2 = 90^{\circ} - x$ $\checkmark \hat{S} = 90^{\circ} - \hat{P_2}$ $\checkmark 90^{\circ} - (90^{\circ} - x) = x$

 $\checkmark Q \hat{W} R = \hat{P}_1 = x$ \checkmark QWR = \hat{S}

(3)

 $\checkmark O \hat{W} R = O \hat{S} T$

 $\checkmark R \stackrel{\hat{Q}}{Q} W$ is common

✓ angles equal (3)

 $\checkmark \frac{TS}{RW} = \frac{QT}{QR}$ $\checkmark \frac{TS}{2} = \frac{8}{4}$ \checkmark TS = 4 cm (3)

 $\checkmark \frac{SQ}{WQ} = \frac{TS}{RW}$

✓10 cm

✓ 6 cm (3)

[16]

NSC - Memorandum **QUESTION 10**

10.1

$$\frac{CE}{ED} = \frac{CT}{TA} = \frac{1}{2}$$

✓ answer

(1)

10.2.1 From 10.1
$$\frac{CE}{ED} = \frac{1}{2}$$

✓ use of ratio

But DC =
$$9 cm$$

$$\therefore DE = 6 cm$$
$$= BD.$$

✓ DE = 6 cm

(2)

 \therefore D is the midpoint of BE.

10.2.2 D is the midpoint of BE. (from 10.2.1) Then F is the midpoint of BT. ... (sides in proportion)

✓ proportion

$$\therefore TE = 2FD$$
$$= 4 cm$$

(midpoint theorem)

✓ answer

(2)

ALTERNATIVE

$$\frac{FD}{TE} = \frac{BD}{BE}$$
$$\frac{2}{TE} = \frac{6}{12}$$
$$\times TE = 24$$

TE = 4 cm

✓ proportion

 $6 \times TE = 24$

✓ answer

(2)

 $10.3.1 \quad \frac{\Delta ADC}{\Delta ABD} = \frac{3}{2}$

✓ answer

(1)

10.3.2

$$\frac{\Delta TEC}{\Delta ABC} = \frac{\Delta TEC}{\Delta TBC} \times \frac{\Delta TBC}{\Delta ABC}$$

✓ ratios

✓ substitution

✓ answer

(3) [9]

TOTAL: 100