

GRADE 12

MARKS: 100

This memorandum consists of 11 pages.

| QUESTION 1 | | |
| :--- | :--- | :--- | :--- |
| 1.1 | $\mathrm{T}_{1}=2 ; \mathrm{T}_{n}=\mathrm{T}_{n-1}+4$ | $\checkmark \mathrm{~T}_{1}=2$ |
| $\checkmark+4$ | | |
| \checkmark recursion used | | |

QUESTION 3

3.165% of $7800=5070$
3.2 No.

This is just the opinion of a small sample of the South African population. The view of the vast majority has not been heard. It is also not known whether the sample is representative of the population.

The results of the survey are not valid for the following reasons: Only those who were watching this particular programme were able to respond. People who were not watching this programme were not even aware that such a survey had taken place.
Respondents needed a cellphone to make response. The viewers who did not have a cellphone were unable to respond. Also, viewers who had cellphones but no airtime could not respond.
$\checkmark \checkmark$ answer
\checkmark no
\checkmark explanation representative
\checkmark explanation not watching programme ; no cellphone

QUESTION 4

4.1.1 11 students

4.1.2 Let N represent students reading the National Geographic magazine, G represent students reading the Getaway magazine and L represent students reading the Leadership magazine.

$$
\begin{gathered}
\text { 4.1.3 } 21-x+x+14-x+9+14+10+6+11=80 \\
85-x=80 \\
x=5
\end{gathered}
$$

$\checkmark \checkmark$ setting up equation
\checkmark simplification
(3)
4.1.4 $\mathrm{P}($ student reads at least two magazines $)=\frac{5+14+10+9}{80}=0,475$
4.2.1

P (smoke detected by device A or device B)
$=\mathrm{P}($ smoke detected by A$)+\mathrm{P}($ smoke detected by B$)-\mathrm{P}($ smoke detected by both $)$
$=0,95+0,98-0,94$
$=0,99$
4.2.2 $\quad \mathrm{P}($ smoke not detected $)=1-0,99=0,01$
\checkmark formula
\checkmark substitution of probabilities

\checkmark answer	(3)
\checkmark answer	(1)
	$[\mathbf{1 6]}$

QUESTION 5

5.1.1 The number of different meal combinations $=3 \times 4 \times 2=24$.
5.1.2 The number of different meal combinations that have chicken as main course $=3 \times 2 \times 2=12$
5.2.1 Any learner seated in any position in: $6!=6 \times 5 \times 4 \times 3 \times 2 \times 1$ $=720$ different ways.
5.2.2 These 2 particular learners could be seated in 2 different ways. Now consider them to be a single group. This group and the four remaining learners will yield 5 objects which results in $5!=120$ different seating arrangements. Therefore these 2 particular learners could be seated together in $2 \times 120=240$ different ways.

| | |
| :--- | :--- | :--- |
| \checkmark | |
| \checkmark multiplication rule | |
| \checkmark answer | |
| | |
| \checkmark multiplication rule | |
| \checkmark answer | |
| | |
| \checkmark multiplication rule | |
| \checkmark answer | |
| | |
| \checkmark multiplication rule -2 | |
| learners | |
| \checkmark multiplication rule -5 | |
| objects | |
| \checkmark answer | |
| | |

NOTE: \quad According to the National Curriculum Statement the solutions to data-handling problems should be done with the use of a calculator. The alternative to the calculator is to use the pen and paper method as indicated below.

QUESTION 6

$6.1 \& 6.3$

$\checkmark \checkmark$ plotting points
\checkmark labels

$\checkmark \checkmark$ line of least squares
(5.3)
(2)
6.2 By using a calculator : $a=29,22 \quad$ (29.21542 \ldots)

$$
\begin{equation*}
b=0,89 \quad(0,886530 \ldots) \tag{4}
\end{equation*}
$$

\therefore equation of line of least squares is $y=29,22+0,89 x$

ALTERNATIVE

	x	y	$(x-\bar{x})$	$(y-\bar{y})$	$(x-\bar{x})(y-\bar{y}$	$(x-\bar{x})^{2}$	$(y-\bar{y})^{2}$
	16	45	$-14,1$	$-10,9$	153,69	198,81	118,81
	36	70	5,9	14,1	83,19	34,81	198,81
	20	44	$-10,1$	$-11,9$	120,19	102,01	141,61
	38	56	7,9	0,1	0,79	62,41	0,01
	40	60	9,9	4,1	40,59	98,01	16,81
	30	48	$-0,1$	$-7,9$	0,79	0,01	62,41
	35	75	4,9	19,1	93,59	24,01	364,81
	22	60	$-8,1$	4,1	$-33,21$	65,61	16,81
	40	63	9,9	7,1	70,29	98,01	50,41
	24	38	$-6,1$	$-17,9$	109,19	37,21	320,41
Sum	301	559	0	0	639,1	720,9	1290,9
Mean	30,1	55,9					

$\checkmark \checkmark$ calculating the value of b
$\checkmark \checkmark$ calculating the value of a $\checkmark \checkmark$ calculating the value of b

Consider the equation of the least squares line to be $\hat{y}=a+b x$
$b=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^{2}}=\frac{639,1}{720,9}=0,89$
$(0,88653)$

Using $\hat{y}=a+b x$ and \bar{x} and \bar{y},
$55,9=a+(0,88653)(30,1)$
$a=29,22$
$(29,21542516)$
Therefore equation of line of least squares is $y=29,22+0,89 x$
6.4

$$
\begin{aligned}
y & =29,22+(0,89)(22) \\
& =48,8
\end{aligned}
$$ should produce about 49 units.

6.5
$s_{y}=\sqrt{\frac{\sum(y-\bar{y})^{2}}{n}}=\sqrt{\frac{1290,9}{10}}=11,36$
$s_{x}=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n}}=\sqrt{\frac{720,9}{10}}=8,49$

Using $b=r \frac{s_{y}}{s_{x}}$, we have $0,89=r \frac{11,36}{8,49}$
$r=0,66$
6.6 There is a positive correlation between the hours of training and productivity levels. However, the value of r does not indicate a very strong relationship between hours of training and productivity levels. I would suggest that the manager look at the training programme and possibly revise it to meet the demands of the job.
\checkmark substituting 22
\checkmark answer

QUESTION 7

7.1.1 equal to twice the angle subtended by the same chord at the
circumference.
7.1.2 equal to the angle subtended chord in the alternate segment.
7.1.3 supplementary.
\checkmark answer
\checkmark answer
\checkmark answer
(2)
(1)
\checkmark answer
\checkmark answer
(1)

$$
=80^{\circ} \ldots \ldots \ldots \text { (Opposite angles of a cyclic quad are supp.) }
$$

7.2.4 $\quad \hat{\mathrm{O}}_{1}=2 \hat{\mathrm{~A}}=160^{\circ} \ldots$ (angle at the centre is twice...)

ALTERNATIVE

From 7.2.1 $\quad \hat{D}_{2}=\hat{B}_{1}=40^{\circ}$
Now $\hat{\mathrm{D}}_{3}=90^{\circ}-\left(40^{\circ}+40^{\circ}\right)=10^{\circ} \quad \ldots(\tan \perp$ radius $)$
$\therefore \hat{\mathrm{O}}_{1}=180^{\circ}-\left(10^{\circ}+10^{\circ}\right)=160^{\circ} \quad \ldots($ sum of angles in triangles $)$

\checkmark answer	(1)
\checkmark answer	(1)
\checkmark answer	(1)
\checkmark reason \checkmark answer	
	(2)
\checkmark answer	(1)
\checkmark answer	(1)
\checkmark answer \checkmark reason	(2)
$\checkmark \hat{\mathrm{D}}_{3}=10^{\circ}$	
$\checkmark \hat{\mathrm{O}}_{1}=160^{\circ}$	
	(2) [9]

QUESTION 8

8.1 Let $\hat{\mathrm{Q}}_{3}=\hat{\mathrm{B}}=x \quad \ldots$ (angles opp equal sides, $\mathrm{AQ}=\mathrm{AB}$)
$\hat{\mathrm{Q}}_{3}=\hat{\mathrm{R}}_{1}=\hat{\mathrm{R}}_{2}=x \quad \ldots($ ext angle of cyclic quad...) and
$($ RA bisects $\hat{\mathrm{R}})$
$\hat{\mathrm{R}}_{2}=\hat{\mathrm{Q}}_{2}=x \quad \ldots($ angles in the same segment $)$
Now $\hat{\mathrm{Q}}_{2}=\hat{\mathrm{Q}}_{3}=x$
$\hat{\mathrm{Q}}_{2}+\hat{\mathrm{Q}}_{3}=\hat{\mathrm{R}}_{1}+\hat{\mathrm{R}}_{2} \quad$ (ext angle of cyclic quad.)
but $\hat{\mathrm{Q}}_{2}=\hat{\mathrm{R}}_{2}=\hat{\mathrm{R}}_{1} \quad$ (angles in same segment, RA bisect...)
$\therefore \hat{\mathrm{Q}}_{3}=\hat{\mathrm{Q}}_{2}$
OR
$\hat{\mathrm{Q}}_{2}+\hat{\mathrm{Q}}_{2}=\hat{\mathrm{R}}_{1}+\hat{\mathrm{R}}_{2} \quad$ (ext angle cyclic quad.)
but $\hat{\mathrm{Q}}_{2}=\hat{\mathrm{R}}_{2} \quad$ (angles in same segment)
$\Rightarrow \hat{\mathrm{Q}}_{3}=\hat{\mathrm{R}}_{1}$
but $\hat{\mathrm{R}}_{1}=\hat{\mathrm{R}}_{2}=\hat{\mathrm{Q}}_{1} \quad$ (given)
$\Rightarrow \hat{\mathrm{Q}}_{3}=\hat{\mathrm{Q}}_{2}$
$\therefore \mathrm{AQ}$ bisects PQ̂B
$8.2 \quad \hat{\mathrm{R}}_{1}=\hat{\mathrm{B}}=x \ldots \ldots . .($ from 8.1$)$
$\therefore \mathrm{TR}=\mathrm{TB} \ldots \ldots .($ sides opp equal angles)
8.3 $\quad \mathrm{TRP}=2 x \quad \ldots \ldots . .($ from above $)$
$\hat{\mathrm{A}}_{1}=\hat{\mathrm{Q}}_{3}+\hat{\mathrm{B}}=2 x \ldots \ldots($ exterior angle of triangle $)$
And $\hat{\mathrm{P}}=\hat{\mathrm{A}}_{1}=2 x \quad \ldots .($ angles in the same segment $)$

$$
=T \hat{R} P
$$

$$
\begin{align*}
& \checkmark \hat{\mathrm{Q}}_{3}=\hat{\mathrm{B}}=x \\
& \checkmark \hat{\mathrm{R}}_{1}=\hat{\mathrm{R}}_{2}=x \\
& \checkmark \hat{\mathrm{R}}_{2}=\hat{\mathrm{Q}}_{2}=x \tag{3}
\end{align*}
$$

$\checkmark \hat{\mathrm{R}}_{1}=\hat{\mathrm{B}}=x$
\checkmark isosceles triangle (2)
$\checkmark \hat{\mathrm{R}}_{1}+\hat{\mathrm{R}}_{2}=2 x$
$\checkmark \hat{\mathrm{A}}_{1}=\hat{\mathrm{Q}}_{3}+\hat{\mathrm{B}}=2 x$
$\checkmark \hat{\mathrm{P}}=\hat{\mathrm{A}}_{1}=2 x$

QUESTION 9

$9.1 \hat{\mathrm{R}}_{1}=90^{\circ} \ldots($ angle in a semi-circle $)$
$9.2 \quad \hat{\mathrm{P}}_{2}=90^{\circ}-x \quad \ldots$ (angle between radius and tangent)
$\hat{\mathrm{S}}=90^{\circ}-\hat{\mathrm{P}}_{2} \ldots$ (ext. angle of Triangle)(sum of angles of triangle)

$$
=90^{\circ}-\left(90^{\circ}-x\right)=x
$$

$\therefore \hat{\mathrm{P}}_{1}=\hat{\mathrm{S}}=x$
$9.3 \hat{\mathrm{~W}}_{2}=\hat{\mathrm{P}}_{1}=x \ldots($ angles in the same segment $)$
Also $\hat{\mathrm{S}}=x \quad \ldots($ proved 9.2$)$
$\hat{W}_{2}=\hat{\mathrm{S}}$
\therefore SRWT is a cyclic quad...(ext angle $=$ int. opposite angle $)$
9.4 In Δ QWR ; Δ QST
$\hat{\mathrm{W}}_{2}=\hat{\mathrm{S}} \ldots$. (proved 9.3)
$\hat{\mathrm{Q}}_{1}$ is common
$\mathrm{W} \hat{\mathrm{R}} \mathrm{Q}=\hat{\mathrm{T}}_{2} \quad \ldots$.(remaining angles)
$\Delta \mathrm{QWR}||\mid \Delta \mathrm{QST}(\mathrm{AAA})$
9.5.1 $\left.\quad \frac{\mathrm{TS}}{\mathrm{RW}}=\frac{\mathrm{QT}}{\mathrm{QR}} \quad \ldots . . \Delta \mathrm{QWR}| | \right\rvert\, \Delta \mathrm{QST}$
$\therefore \frac{\mathrm{TS}}{2}=\frac{8}{4}$
$4 \mathrm{TS}=16$
$\therefore \mathrm{TS}=4 \mathrm{~cm}$
9.5.2

$$
\begin{aligned}
& \frac{\mathrm{SQ}}{\mathrm{WQ}}=\frac{\mathrm{TS}}{\mathrm{RW}} \\
& \mathrm{SQ}=\frac{4 \times 5}{2}=10 \mathrm{~cm} \\
& \therefore \mathrm{SR}=\mathrm{SQ}-\mathrm{RQ} \\
& =6 \mathrm{~cm}
\end{aligned}
$$

\checkmark angle in a
semi-circle
$\checkmark \hat{\mathrm{P}}_{2}=90^{\circ}-x$
$\checkmark \hat{\mathrm{S}}=90^{\circ}-\hat{\mathrm{P}_{2}}$
$\checkmark 90^{\circ}-\left(90^{\circ}-x\right)=x$
$\checkmark \mathrm{Q} \hat{\mathrm{WR}}=\hat{\mathrm{P}}_{1}=x$
$\checkmark \mathrm{Q} \hat{W} R=\hat{\mathrm{S}}$
\checkmark reason
$\checkmark \mathrm{Q} \hat{\mathrm{W} R}=\mathrm{Q} \hat{\mathrm{S}} \mathrm{T}$
$\checkmark \mathrm{R} \hat{\mathrm{Q} W}$ is common
\checkmark angles equal
$\checkmark \frac{\mathrm{TS}}{\mathrm{RW}}=\frac{\mathrm{QT}}{\mathrm{QR}}$
$\checkmark \frac{\mathrm{TS}}{2}=\frac{8}{4}$
$\checkmark \mathrm{TS}=4 \mathrm{~cm}$
$\checkmark \frac{\mathrm{SQ}}{\mathrm{WQ}}=\frac{\mathrm{TS}}{\mathrm{RW}}$
$\checkmark 10 \mathrm{~cm}$
$\checkmark 6 \mathrm{~cm}$

