basic education

Department:
Basic Education REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICAL LITERACY P2

FEBRUARY/MARCH 2013

MEMORANDUM

MARKS: 150

Symbol	Explanation
M	Method
M/A	Method with accuracy
CA	Consistent accuracy
A	Accuracy
C	Conversion
S	Simplification
RT/RG	Reading from a table/Reading from a graph
SF	Correct substitution in a formula
O	Opinion/Example
P	Penalty, e.g. for no units, incorrect rounding off etc.
R	Rounding off

This memorandum consists of $\mathbf{1 7}$ pages.

Ques	Solution	Explanation	AS
1.2.1	Total points scored $=(20 \times \mathbf{g})+(10 \times \mathbf{s})+(5 \times \mathbf{b}) \checkmark \checkmark \mathbf{M}$ OR $=(20 \times \mathbf{g})+(10 \times \mathbf{s})+\left(\frac{1}{2} \times 10 \times \mathbf{b}\right) \checkmark \checkmark \mathrm{M}$	1A correct values 2 M adding and multiplying OR 1A correct values 2 M adding and multiplying	$\begin{aligned} & \hline 12.2 .1 \\ & \text { L2 } \end{aligned}$
1.2.2	Total points scored by China $\begin{aligned} & =20(9)+10(3)+5(11) \checkmark \mathrm{M} \\ & =265 \checkmark \mathrm{~A} \end{aligned}$ Total points scored by Australia $\begin{aligned} & =20(8)+10(5)+5(10) \\ & =260 \checkmark \mathrm{~A} \end{aligned}$ Total points scored by South Africa $\begin{aligned} & =20(5)+10(15)+5(3) \\ & =265 \checkmark \mathrm{~A} \end{aligned}$ Although South Africa and China had an equal number of points, China performed the best because they had more gold medals. OR Any other well-thoughtout opinion	1M substitution 1A simplification 1A simplification 1A simplification 2 O conclusion	$\begin{array}{\|l\|} \hline 12.2 .1 \\ \text { 12.4.1 } \\ \text { L3 (4) } \\ \text { L4 (2) } \end{array}$
			[24]

QUESTION 2 [30 MARKS]			
Ques	Solution	Explanation	AS
2.1.1	$\begin{aligned} 800 \mathrm{~km} & =500 \text { miles } \checkmark \mathrm{A} \\ 2798 \mathrm{~km} & =\frac{500 \times 2798}{800} \text { miles } \checkmark \mathrm{C} \\ & =1748,75 \text { miles } \checkmark \mathrm{CA} \end{aligned}$ OR $l=$ the length of South African coastline $\begin{aligned} & \frac{2798}{800}=\frac{l}{500} \checkmark \mathrm{M} \\ & l=\frac{500 \times 2798}{800} \checkmark \mathrm{M} \\ & l=1748,75 \text { miles } \checkmark \mathrm{CA} \end{aligned}$ OR $800 \mathrm{~km}=500 \text { miles }$ So $1 \mathrm{~km}=\frac{500}{800}$ miles $^{\checkmark} \mathrm{M}$ $\begin{aligned} \therefore 2798 \mathrm{~km} & =\frac{500}{800} \times 2798 \text { miles } \checkmark \mathrm{C} \\ & =1748,75 \text { miles } \checkmark \mathrm{CA} \end{aligned}$	1A equating distances 1C correct conversion 1CA simplification OR 1M concept 1M manipulation 1CA simplification OR 1M concept 1C conversion 1CA simplification	$\begin{aligned} & \text { 12.1.1 } \\ & \text { L3 } \end{aligned}$
		Answer only full marks	
2.1.2	$\checkmark \mathrm{A}$ Western Cape, Eastern Cape, Kwazulu Natal, $\checkmark \checkmark \mathrm{M}$, Northern Cape	1 A naming the coastal provinces 2M correct order	$\begin{aligned} & \text { 12.3.1 } \\ & \text { L4 } \end{aligned}$
2.1.3	223 mm on the map represents $2798 \mathrm{~km} \checkmark \mathrm{C}$ 223 mm on the map represents $2798000000 \mathrm{~mm} \sqrt{\checkmark}$ 1 mm on the map represents $\frac{2798000000000}{223}$ $=12547085,2 \mathrm{~mm} \checkmark \mathrm{~S}$ Scale is $1: 12500000^{\checkmark} \mathrm{R}$	1C correct conversion values 1C conversion 1S simplification 1 R rounding Answer only full marks	$\begin{aligned} & 12.3 .3 \\ & \text { L3 } \end{aligned}$
		(4)	
2.2.1	$\begin{aligned} \text { Crew } & =(3 \times 10)+14+\stackrel{\vee \mathrm{A}}{(2 \times 22)} \\ & =88 \checkmark \mathrm{CA} \end{aligned}$	1A ski-boat crew 1A medium freezer crew 1CA simplification	$\begin{aligned} & \hline 12.2 .1(2) \\ & 12.1 .1(1) \\ & \text { L3 } \end{aligned}$

Ques	Solution	Explanation	AS
2.2.2	$\begin{aligned} \text { Number of extra crew members } & =102-88 \checkmark \mathrm{M} \\ & =14 \checkmark \mathrm{CA} \end{aligned}$ He should buy one small freezer boat as he can operate it with a maximum of 14 crew members.	1M difference 1CA simplification 2J correct boat	$\begin{aligned} & 12.1 .1 \\ & \text { (1) } \\ & \text { 12.2.1 } \\ & \text { (3) } \\ & \text { L3 (1) } \\ & \text { L4 (3) } \end{aligned}$
2.3.1		1SF substituting 1CA value of D 1SF substituting 1M making E the subject 1CA value of E Answer only full marks (5)	$\begin{aligned} & 12.2 .1 \\ & \text { L2 (2) } \\ & \text { L3 (3) } \end{aligned}$

QUESTION 3 [31 MARKS]			
Ques	Solution	Explanation	AS
3.1.1		1M finding the total 1CA value of x 1CA calculating $\frac{1}{3}$ 1CA value y	$\begin{aligned} & \hline 12.4 .4(1) \\ & 12.2 .1(3) \\ & \text { L3 } \end{aligned}$
		Answer only full marks (4)	
3.1.2	Ms Nana could have calculated her scores incorrectly ${ }^{\vee}$ O OR One of the learners was absent and did not complete and submit the questionaire. $\checkmark \mathrm{O} \checkmark \mathrm{O}$ OR Any other valid reason	2 O reason (2)	$\begin{aligned} & \hline 12.4 .4 \\ & \text { L4 } \end{aligned}$
3.2.1	$\text { Cost }(\text { in rand })=m \times(375+150)$ OR $\text { Cost }(\text { in rand })=m \times(525) \quad \checkmark \mathrm{A}$	2 A equation (2)	$12.2 .1$
3.2.2	There are seven learners under 18 years old. \checkmark A This would mean that 4 family rooms can be booked. Four family rooms could accommodate 16 people in total $\sqrt{ }$ CA The teacher can book one twin room since the teacher will not share a room. \checkmark CA Minimum number of rooms needed is 4 family rooms and 1 twin room. $\checkmark \mathrm{CA}$	1A counting 1CA total number of people in the family rooms. 1CA recognising 1 twin room for the teacher 1CA minimum number of rooms.	$\begin{aligned} & \hline 12.2 .1 \\ & \text { L4 } \end{aligned}$

Ques	Solution	Explanation	AS
3.2.3	$\begin{aligned} \text { Cost per night for one twin room } & =1 \times(\mathrm{R} 375+\mathrm{R} 150) \checkmark \mathrm{M} \\ & =\text { R5 } 52 \checkmark \mathrm{~A} \end{aligned}$ $\begin{aligned} \text { Cost per night for four family rooms } & =4 \times \text { R679 } \checkmark \mathrm{M} \\ & =\text { R2 } 716 \checkmark \mathrm{~A} \end{aligned}$ $\begin{aligned} \text { Cost per night for accomodation } & =\text { R525 + R2 } 716 \\ & =\text { R3 } 241 \checkmark \text { CA } \end{aligned}$ Total cost for two nights = R3 241×2 $=\mathrm{R} 6482 \sqrt{\mathrm{CA}}$ Cost per person $\stackrel{\checkmark \mathrm{M}_{\mathrm{R}} \text { 6482 }}{16} \approx \mathrm{R} 405,13 \quad \checkmark \mathrm{CA}$ Mrs Suzman estimation is INCORRECT. \checkmark C OR Total cost for two nights $\quad \checkmark$ CA $\quad \checkmark$ CA $\quad \checkmark \checkmark$ A $\quad \checkmark \checkmark$ M $\begin{aligned} & =2 \times[4 \times \mathrm{R} 679+1 \times(\mathrm{R} 375+\mathrm{R} 150)] \\ & =\mathrm{R} 6482 \end{aligned}$ Cost per person $=\frac{\mathrm{R} 6482}{16} \approx \mathrm{R} 405,13 \quad \checkmark \mathrm{CA}$ Mrs Suzman's estimation is INCORRECT. \checkmark C	1M concept 1A cost of one twin room per night 1M concept 1A cost of four family rooms per night 1CA accommodation cost per night 1CA cost per two nights 1 M dividing 1CA simplification 1C conclusion OR 2M formula 2A use of correct values 1CA for two nights 1CA simplification 1M dividing 1CA simplification 1C conclusion	$\begin{aligned} & \text { 12.1.1(5) } \\ & \text { 12.2.1(4) } \\ & \text { L3(2) } \\ & \text { L4(7) } \end{aligned}$
3.3.1	B2 $\checkmark \checkmark$ A	2A grid reference	$\begin{aligned} & \hline 12.3 .4 \\ & \text { L2 } \end{aligned}$
3.3.2	North West $\checkmark \checkmark$ A	2A direction (2)	$\begin{aligned} & \hline 12.3 .4 \\ & \text { L3 } \end{aligned}$
3.3.3	Hamilton Street ${ }^{\checkmark}$ A	2A answer (2)	$\begin{aligned} & 12.3 .3 \\ & \text { L2 } \end{aligned}$

Ques	Solution	Explanation	AS
3.3.4	From the Hotel, turn left into Proes St. \checkmark A At the intersection of Proes and Beatrix St, turn right into Beatrix St. \checkmark A Continue on Beatrix St, which later becomes Voortrekkers St Travel until the intersection of Voortrekkers and Jacobs $\stackrel{\checkmark}{ } \mathrm{A}$. Turn right into Jacobs Street and right into Tenth Ave. \checkmark A OR WITH THE NEW STREET NAMES: From the Hotel, turn left into Johannes Ramohoase St. \checkmark A At the intersection of Johannes Ramohoase St. and Steve Biko St, turn right into Steve Biko St. \checkmark A Travel until the intersection of Steve Biko St. and Jacob St. Turn right into Jacobs Street and right into Tenth Ave. \checkmark A	1A correct direction from the hotel 1A Beatrix St 1A Voortrekkers and Jacob St. 1A Jacobs St and Tenth Av. OR 1A correct direction from the hotel 1A Steve Biko St 1A Steve Biko St and Jacob St. 1A Jacobs St and Tenth Av.	$\begin{aligned} & \hline 12.3 .3 \\ & \text { L3 } \end{aligned}$
			[31]

Ques	Solution	Explanation	AS
	Breadth of tent increased by 15% $\begin{aligned} & =1,8 \mathrm{~m}+(0,15 \times 1,8 \mathrm{~m}) \quad \text { OR } 1,8 \mathrm{~m} \times 1,15 \checkmark \mathrm{M} \\ & =2,07 \mathrm{~m} \checkmark \mathrm{~A} \end{aligned}$ Length of tent icreased by 15% $\begin{aligned} & =2,4 \mathrm{~m}+0,15 \times 2,4 \mathrm{~m} \text { OR } 2,4 \mathrm{~m} \times 1,15 \\ & =2,76 \mathrm{~m} \checkmark \mathrm{~A} \end{aligned}$ Breadth $1=4 \times 2,07 \mathrm{~m}=8,28 \mathrm{~m}$ Breadth $2=3 \times 2,07 \mathrm{~m}=6,21 \mathrm{~m} \quad \checkmark \mathrm{CA}$ Length $1=6 \times 2,76 \mathrm{~m}=16,56 \mathrm{~m} \quad \checkmark \mathrm{CA}$ Length $2=4 \times 2,76 \mathrm{~m}=11,04 \mathrm{~m} \quad \checkmark \mathrm{CA}$ Area of camp site $\begin{aligned} & =(16,56 \mathrm{~m} \times 8,28 \mathrm{~m})+(11,04 \mathrm{~m} \times 6,21 \mathrm{~m}) \checkmark \mathrm{S} \\ & =137,1168 \mathrm{~m}^{2}+68,5584 \mathrm{~m}^{2} \\ & =205,6752 \mathrm{~m}^{2} \\ & =205,68 \mathrm{~m}^{2} \quad \checkmark \mathrm{CA} \end{aligned}$	OR 1M increased \% 1A increased breadth 1A increased length 1CA breadths 2CA lengths 1S substitution 1CA simplification	
4.1.2	The probability of it raining is very high. OR There is an 80% chance that it will rain. $\checkmark \checkmark \mathrm{O}$ OR There is a 20% chance that it will not rain. $\quad \checkmark \checkmark$ O	20 Opinion (2)	$\begin{aligned} & \text { 12.4.5 } \\ & \text { L4 } \end{aligned}$

Ques	Solution	Explanation	AS
4.2	Time spent on group activities on Day 1, 2, 3 and 4 $=2$ hours +2 hours $15 \mathrm{~min}+2$ hours +2 hours $=8 \text { hours } 15 \mathrm{~min} \quad \checkmark \mathrm{M}$ $\begin{aligned} \text { Total time for first four days } & =4 \times(8 \text { hours } 15 \mathrm{~min}) \\ & =33 \text { hours } \checkmark \mathrm{A} \end{aligned}$ Time spent on group activities on Day 5 $=2 \text { hours }+2 \text { hours } 15 \mathrm{~min}+2 \text { hours }$ $=6 \text { hours } 15 \mathrm{~min} \checkmark \mathrm{~A}$ Total time spent on group activities $\begin{aligned} & =33 \text { hours }+6 \text { hours } 15 \mathrm{~min} \\ & =39 \text { hours } 15 \mathrm{~min} \\ & =39,25 \text { hours } \checkmark \mathrm{CA} \end{aligned}$ Total time spent at the camp from 07:00 on Day 1 to 15:30 on Day 5 $\begin{aligned} & =4 \times 24 \text { hours }+8 \text { hours } 30 \mathrm{~min} \\ & =104 \text { hours } 30 \mathrm{~min} \\ & =104,5 \text { hours } \checkmark \mathrm{CA} \end{aligned}$ Percentage time spent on group activities $\begin{aligned} & =\frac{39,25}{104,5} \times 100 \% \checkmark \mathrm{M} \\ & =37,5598 \ldots \% \checkmark \mathrm{CA} \\ & \approx 38 \% \\ & \therefore \text { The teacher is not correct. } \checkmark \mathrm{C} \end{aligned}$	1M adding time 1A total time for four days 1A time for day 5 1CA total workshop time 1CA total camp time 1M calculating \% 1CA simplification 1C conclusion	$\begin{aligned} & \hline 12.1 .1 \\ & (6) \\ & 12.3 .2 \\ & (2) \\ & \text { L4 } \end{aligned}$
4.3.1	BEM means brown bread with egg and mayonnaise $\checkmark \checkmark$ A	2A correct explanation	$\begin{aligned} & \text { 12.4.5 } \\ & \text { L2 } \end{aligned}$
4.3.2	The following should be found on the tree diagram: (a) WEN $\checkmark \mathrm{A}$ (b) WFN $\checkmark \mathrm{A}$ (c) HEM $\checkmark \mathrm{A}$ (d) HFM $\checkmark \mathrm{A}$	4A (1 for each correct outcome)	$\begin{aligned} & \text { 12.4.5 } \\ & \text { L3 } \end{aligned}$

Ques	Solution	Explanation	AS
4.3.3 (a)	$\begin{array}{lllll} \frac{1}{12} \checkmark \mathrm{~A} & \text { OR } & 0,08 \checkmark \checkmark \mathrm{~A} & \text { OR } & 8,33 \% \end{array}$	1A numerator 1A denominator	$\begin{aligned} & \hline 12.4 .5 \\ & \text { L3 } \end{aligned}$
4.3.3 (b)		1A numerator 1A denominator 1CA simplification 1A for 1 1 A for $\frac{1}{3}$ 1CA simplification	$\begin{aligned} & \hline 12.4 .5 \\ & \text { L3 } \end{aligned}$
			[29]

QUESTION 5 [35 MARKS]			
Ques	Solution	Explanation	AS
5.1.1 (a)	$\begin{aligned} \text { Difference in cost per } \mathrm{kWh} & =\frac{\mathrm{R} 467,43}{600}-\frac{\mathrm{R} 94,99}{150} \sqrt{ } \mathrm{RT} \\ & =\mathrm{R} 0,77905-\mathrm{R} 0,63326 \\ & =\mathrm{RA} 0,145 \text { OR } 14,5 \text { cents } \\ & \approx \mathrm{R} 0,15 \text { OR } 15 \text { cents } \end{aligned}$	1RT using correct values 1 M finding the rate 1CA simplification 1CA difference (accept the answer in rand or cents) Answer only full marks	$\begin{aligned} & \hline 12.4 .4(2) \\ & 12.1 .1(2) \\ & \text { L2 (2) } \\ & \text { L3 (2) } \end{aligned}$
		(4)	
$\begin{array}{\|l} \text { 5.1.1 } \\ \text { (b) } \end{array}$	FAIR ${ }^{\text {a }}$ UNFAIR		$\begin{aligned} & \hline \text { 12.1.1 } \\ & \text { L. } 4 \end{aligned}$
	The more electricity you All people who use use, the more you should electricity should pay the pay. $\checkmark \checkmark \mathrm{R}$ same rate because they OR use using the same $\|$resource $\checkmark \checkmark \mathrm{R}$	2R reason (fair) 2R reason (unfair)	
	OR Any suitable reason.	(4)	
5.1.2	$\begin{aligned} \mathbf{A} & =\text { R467,43 }- \text { R393,67 } \\ & =\text { R } 73,76 \checkmark \mathrm{~A} \end{aligned}$	1A simplification 1M calculating \%	$\begin{aligned} & \hline \text { 12.1.3(4) } \\ & \text { 12.4.4(2) } \end{aligned}$
	$\mathbf{B}=\frac{\mathrm{R} 888,83-\mathrm{R} 728,63}{\mathrm{R} 728,63} \times 100 \%^{\checkmark \mathrm{M}}$		
	$\begin{aligned} & =21,986 \% \checkmark \mathrm{~A} \\ & \approx 21,99 \% \end{aligned}$	1A simplification	
	$\begin{aligned} & \stackrel{\vee}{\mathrm{A}} \\ & \mathbf{C}=\text { R1 147,33 } \times 123,38 \% \vee \mathrm{M} \\ &=\text { R1 147,33 } \times 1,2338 \\ &=\text { R1 415,58 } \checkmark \mathrm{A} \end{aligned}$	1 M increasing by a 25,12\% 1A correct values used 1A simplification	
	OR $\begin{aligned} \text { C } & =\text { R1 147,33 } \checkmark \text { 23,38\% of R1 147,33 } \checkmark \mathrm{M} \\ & =\text { R1 147,33 + R268,245754 } \\ & \approx \text { R1 147,33 + R268,25 } \\ & \approx \text { R1 415,58 } \checkmark \mathrm{A} \end{aligned}$	OR 1 M increasing by 25,12\% 1A correct values used	
	$\begin{aligned} & \text { OR } \\ & \begin{array}{l} \text { C }=123,38 \% \text { of R1 148,33 } \checkmark \mathrm{M} \checkmark \mathrm{M} \\ \quad \approx \text { R1 416,81 } \checkmark \mathrm{A} \end{array} \end{aligned}$	OR 2M concept 1A simplification	

Ques	Solution	Explanation	AS
5.2.1 (a)	First two members will need an area of $2 \mathrm{~m}^{2}$ There are four other members who need $4 \times 0,7 \mathrm{~m}^{2}$ $=2,8 \mathrm{~m}^{2}$ $\begin{aligned} \text { Total area } & =2 \mathrm{~m}^{2}+2,8 \mathrm{~m}^{2} \\ & =4,8 \mathrm{~m}^{2} \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Length } & =\frac{\text { area }}{\text { breadth }} \quad \checkmark \mathrm{M} \\ & =\frac{4,8 \mathrm{~m}^{2}}{1,5 \mathrm{~m}} \end{aligned}$	1 A recognising the $2 \mathrm{~m}^{2}$ 1M multiplying 1CA total 1 M using area formula 1CA simplification 1A unit	$\begin{aligned} & \text { 12.3.1 } \\ & \text { L3 } \end{aligned}$
		Answer only full marks	
5.2.1 (b)		1SF substitution 2C conversion 1CA manipulation 1CA finding square root 1 R rounding	$\begin{aligned} & 12.3 .1(4) \\ & 12.3 .2(2) \\ & \text { L3 } \end{aligned}$

Ques	Solution	Explanation	AS
5.2.2	Cost of supplying and installing the geyser $\begin{aligned} & =\text { R12 } 490-\text { R4 } 500 \\ & =\text { R7 } 990 \vee \text { CA } \end{aligned}$ $\begin{aligned} & \checkmark \mathrm{M} \\ \text { Monthly cost of heating water } & =0,45 \times \mathrm{R} 888,83 \\ & =\mathrm{R} 399,97 \checkmark \mathrm{~A} \end{aligned}$ $\begin{aligned} & \text { Number of months }=\frac{\mathrm{R} 7990}{\mathrm{R} 399,97} \checkmark \mathrm{M} \\ &=19,976 \ldots \checkmark \mathrm{CA} \\ & \approx 19,98 \\ & \checkmark \mathrm{~J} \end{aligned}$ YES her statement is valid. OR Cost of supplying and installing the geyser $\begin{aligned} & =\text { R12 } 490-\text { R4 } 500 \\ & =\text { R7 } 990 \checkmark \text { CA } \end{aligned}$ $\text { Monthly cost of heating water }=0,45 \times \text { R888,83 }$ $=\mathrm{R} 399,97 \checkmark \mathrm{~A}$ Saving R399,97 per month for 2 years $\text { Total saving }=\text { R399,97 } \times 24 \text { months } \sqrt{ } \mathrm{M}$ $=\text { R9 599,28 } \checkmark \text { CA }$ \checkmark J YES her statement is valid.	1CA simplification 1M multiplication 1A calculating the savings 1M dividing 1CA simplification 1J justification OR 1CA simplification 1M multiplication 1A calculating the savings 1M multiplying 1CA simplifictaion 1J justification	$\begin{aligned} & \hline 12.1 .1 \\ & \text { L4 } \end{aligned}$
			[35]

