SOLUTIONS

IMO 2014
Problems and Solutions

Problem 1. Let ay < a1 < az < --+ be an infinite sequence of positive integers. Prove that
there exists a nnique integer n > 1 such that

at+a+-+a
Iy < %Sﬂnu- (1)

Solution. For n = 1,2,... define
dy, = (00 + @y + -+ +a,) — na,.

The sign of d,, indicates whether the first inequality in (1) holds; i.e., it is satisfied if and only
if d,, == 0.

Notice that
N@p. — (G + a1+ +a) =N+ 1)an1— (G0 + a1+ + n + Qnp1) = —dnsa.

so the second inequality in (1) is equivalent to d,,_; < 0. Therefore. we have to prove that there
is a unique index n > 1 that satisfies d,, > 0 > d,41.

By its definition the sequence dy, . . .. consists of integers and we have
di=(ay+a)—1-a=0ay>0.
From
dnst = o = (a0 + -+ @+ 8ns1) = (1+ Danyr) = (@04 -+ 2a) = 28) = {0 = Gpss) < 0
we can see that dnyy < d, and thus the sequence strictly decreases.

Hence, we have a deereasing sequence dy > dy > -+ of integers such that its first clement, d;
is positive. The sequence must drop below 0 at some point, and thus there is a unique index n,
that is the index of the last positive term. satisfying d, > 0 > dyu41.

Comment. Omitting the assumption that ag, a1.... are integers allows the numbers d, to be all
positive. In such cases the desired n does not exist. This happens for example if ¢, = 2 — :% for all
integers n > 0,

Problem 2. Let n > 2 be an integer. Consider an n x n chessboard consisting of n? unit
squares. A configuration of n rooks on this board is peaceful if every row and every column
contains exactly one rook. Find the greatest positive integer & such that, for each peaceful
configuration of n rooks, there is a k x k squarc which does not contain a rook on any of its k*
unit squares.

Answer. [vn—1].

Solution. Let £ be a positive integer. We will show that (i) if n > #% then each peaceful
configuration contains an empty £ x £ square, but (ii) if n < €2 then there exists a peaceful
configuration not containing such a squarc. These two stateinents together yicld the answer,

(i). Assume that n > €. Consider any peaceful configuration. There exists a row R
containing a rook in its leftmost cell. Take £ consecutive rows with R being one of them, Their
union U contains cxactly £ rooks, Now rcmove the n ~ € > 1 leftmost. colnmns from U (thus
at least one rook is also removed). The remaining part is an £ x £ rectangle, so it can be split
into £ squares of size £ x £, and this part contains at most £ —1 rooks. Thus one of these squares
is empty.

(ii). Now we assume that = < £* (in particular, we have £ > 2). Firstly, we will construct
a peaceful configuration with no empty £ x £ square for the case n = €2. After that we will
modify it to work for smaller values of n.

Let ns ennmerate the rows from hottom to top as well as the colnmns from left to right
by the numbers 0,1....,¢ — 1. Every cell will be denoted, as usual, hy the pair (r.¢) of its
row and column numbers. Now we put the rooks into all cells of the form (if + j. j€ 4 1) with
i,7 = 0,1,...,£ — 1 (the picture below represents this arrangement for £ = 3). Since each
number from 0 to £2 - 1 has a unique representation of the form i€ + j (0 < 4,j < £ — 1). cach
row and each column contains exactly one rook.
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Next, we show that each ¢ x ¢ square A on the board contains a rook. Consider such a
square A, and consider £ consecutive rows the union of which contains A. Let the lowest of
these rows have number pf + q with 0 < p.g < £ — 1 (notice that pf + g < ¢* — £). Then the
rooks in this union are placed in the columns with numbers ¢¢+p, (y+ 1) +p, .... (E=1)¢+p,
p+LE+(p+1), ..., (¢g—1)f+p-+ 1 or, putting these numbers in increasing order.

p+LE+(p+1), .., (g-1L+(p+1), ql+p, (g+DE+p, ... (- 1) +p.

One readily checks that the first munber in this list is at most € = 1 (it p = £ — 1, then g = 0,
and the first listed number is gf +p = £ — 1). the last one is at least (£ — 1)£. and the difference
between any two consecutive numbers is at most £. Thus, one of the £ consecutive columns
intersecting A contains a number listed above, and the rook in this column is inside A, as
required. The construction for n = ¢2 is established.
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It remains to construct a peaceful configuration of rooks not containing an empty £ x £
square for n < £*. In order to achieve this, take the construction for an €2 x £2 square described
above and remove the £2 — n bottom rows together with the £2 — n rightinost columns. We will
have a rook arrangement with no empty £ x £ square, but several rows and columns may happen
to be empty. Clearly, the number of empty rows is equal to the nunber of empty columns, so
one can find a bijection between them, and put a rook on any crossing of an empty row and an
empty column corresponding to each other.

Comment. One may apply a different argument for part (i). In view of the arguments in the last
paragraph of the solution, it suffices to deal only with the case n = ¢2 4+ 1. Notice now that among the
four corner cells. at least one is empty. So the rooks in its row aud in its coluinn are distinet. Now,
deleting this row and column we obtain an £ x #* square with £ — 1 rooks in it. This square can be
partitioned into {2 squares of size £ x ¢, so one of them is empty-

Problem 3. Convex quadrilateral ABCD has ZABC = ZCDA = 90°. Point H is the foot of
the perpendicular from A to BD. Points § and T lie on sides A5 and AD, respectively, such
that H lies inside triangle SCT and

LCIS - ZC8B =90°, ZTIIC — £DTC == 90°.
Prove that line BD is tangent to the circumcircle of triangle TSH.

Solution. Let the line passing through €' and perpendicular to the line SC intersect the line
AB at @ (see Figure 1). Then

£8QC =90° - £BSC = 180° — LSHC,

which implies that the points C, H, S. and @ lie on a common circle. Morveover, since SQ is a
diameter of this circle, we infer that the circnuncentre K of triangle SH( lies on the line AR.
Similarly. we prove that the circumcentre L of triangle ¢'H'T lies on the line AL,

Figure 1
In order to prove that the circumcircle of triangle SHT is tangent to BD, it suffices to show
that the perpendicular hisectors of H.S and HT intersect on the line AH. However, these two
perpendicular bisectors coincide with the angle bisectors of angles AR H and ALH. Therefore.
in order to complete the solution, it is enough (by the bisector theorem) to show that

AK AL
KH IH' )
We present two proofs of this equality.

First proof. Let the lines KL and HC intersect at M (see Figure 2). Since KH = KC
and LH = LC, the points H and C’ are symmetric to each other with respect to the line K L.
Therefore M is the midpoint of HC. Denote by O the cireumcentre of quadiilateral ABCD.
Then O is the midpoint of AC. Therefore we have OM || AIl and henee OM L BD. This
together with the equality OB = OD implies that OAf is the perpendicular bisector of BD
and therefore BM = DA,

Since CM L K, the points B, C, M, and A lie on a common circle with diameter K.
Similarly, the points £, ', M, and D lie on a circle with diameter LC'. Thus, using the sine

law, we obtain
AK  sinZALK DM CK CK KH

Al sinZAKL _ CIL BM _CL  TH'
4
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which finishes the proofl of (1).
A

Figure 2 Figure 3
Second proof. If the points A, H, and (¥ are collinear, then AK = AL and KH = LH, so
the cquality (1) follows. Assume therefore that the points A, 17, and C do not lic in a linc and
consider the circle w passing through them (see Figure 3). Since the quadrilateral ABC'D is
cyclic,

LBAC = ZBDC =90° — ZADH = ZHAD.

Let NV # A be the intersection point of the circle w and the angle bisector of ZCAH. Then
AN is also the angle bisector of ZBAD. Since H and C are symmetric to each other with
respeet to the line KL and [IN = NC. it follows that both N and the centre of w lic on the
line K L. This means that the circle w is an APOLLONIUS circle of the points K and L. This
immediately yields (1).

Comment. Either proof can be used to obtain the following generalised result:
Let ABCD be a conver guadrileteral end let H be a point in its interior with ZBAC = £DAH. The
points S and T are chosen on the sides AB and AD, respectively, in such a way that H lies inside
triangle SCT and

LSHC — £BSC =90°, ZTHC - ZDTC =90°.
Then the circumcentre of triangle SHT lies on the line AH (and moreover the circumcentre of triangle
SCT lies on AC).

Problem 4. Points P and @ lie on side BC of an acute-angled triangle ABC so that
£PAB = ZBCA and £CAQ = ZABC. Points Af and N lie on lines AP and AQ, respectively,
such that P is the midpoint of AAf, and @ is the midpoint of AN. Prove that lines BAf and
'V intersect on the circumcircle of triangle AR(”.

Solution 1. Denote by S the intersection point of the lines BM and CN. Let moreover
A= LQAC = LZOBA and v = ZPAB = ZACR. From these equalities it follows that the
triangles ABP and C'A( are similar (see Figure 1). Therefore we obtain

BF _BP _AQ _NQ

PM ~ PA QC  QC’
Moreover,

£ZBPM =B +~v=/CQN,

Hence the triangles BP1 and NQC are similar. This gives ZBM P = ZNCQ, so the triangles
BPM and BSC are also similar. Thus we get

LCSB = £ZBPM = f+v=180° — /BAC,

which completes the solution.

N M N M
Figure 1 Figure 2

Solution 2. As in the previous solution, denote by S the intersection point of the lines BM
and NC. Let morcover the cireumcirele of the triaugle ABC intersect the lines AP and AQ
again at i’ and L, respectively (see Figure 2).

Note that £LBC = ZLAC = ZCBA and similarly ZKCB = ZKAB = ZBCA. Tt implies
that the lines BL and CK meet at a point X, being symmetric to the point A with respect:
to the line BC. Since AP = PAM and AQ = @N, it follows that X lies on the line MN.
Therefore. using PASCAL's theorem for the hexagon ALBSCK, we infer that S lies on the
cireumcircle of the triangle AB(, which finishes the proof.

Comment. Both solutions can be modified to obtain a more general result, with the equalities
AP =PM and AQ=0QN

replaced by

AP _ QN
PM - AQ-
6
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Problem 5. For each positive infteger n, the Bank of Cape Town issnes coins of denomination
}. Given a finite collection of such coins (of not necessarily different denominations) with total
vaiune at most 99 + % prove that it is possible to split this collection into 100 or fewer groups.
such that each group has total value at most 1.

Solution. We will show that for every positive integer N, any finite collection of these coins
of total value at most N — 1, can be split into N groups, each of total value at most 1. The
problemn statement is a particular case for N = 100.

We start with some preparations. If several given coins together have a $otal value also of
the form —i- for a positive integer k, then we may merge them into one new coin. Clearly, if the
resulting collection can be split in the required way then the initial collection can also be split.

After each such merging, the total number of coins decreases, thus at some moment we
come to a situation when no more merging is possible. At this moment, for every even k there
is at most one coin of value } (vtherwise two such coins may be merged), and tor every odd
% > 1 there are at most & — 1 coins of value £ (otherwise & such coins may also be merged).

Now, clearly, each coin of value 1 should form a single group: if there are d such coins then
we may remove them from the collection and replace N by N — d. So from now on we may
assume that there are no coins of value 1.

Finally, we may split all the coins in the following way. For cach k=1.2,...,N wc put all
the coins of values 5z and £ into a group Gi; the total value of 7y does not exceed

1 1
2k —2)  ——+—< 1L
@k -2 1t m
It vemains to distribute the “small” coins of values which are less than ﬁ; we will add them
one hy one. On each step, take any remaining small coin. The total valne of coins in gronps at
this moment is at most N — 1, so there exists a group of total value at most T(N-D=1-55
thus it is possible to put our small coin into this group. Acting so, we will finally distribute all

the coins.

Comment 1. The algorithm may be modified, at least the step where one distributes the roins of
values > BIW One different way is to put into Gy all the coins of values (2&-11)2' for all integer s > 0.

One may easily see that their total value also does not exceed 1.

Comment 2. The original proposal also contained another part, suggesting to show that a required
splitting 1way be impossible if the total value of coius is ab most 100, There are many examples of
such a collection, e.g. one may take 98 coins of value 1, one coin of value 1, two coins of value 4, and
four coins of value 1.

The Problem Sclection Comnittee thought that this part is less suitable for the cowpetition.

e

Problem 6. A set of lines in the plane is in general pasition if no two are parallel and no
three pass through the same point. A set of lines in general position cuts the plane into regions,
some of which have finite area; we call these its finite regions. Prove that for all sufficiently
large m, in any set of n lines in general position it is possible to colour at least /7 of the lines
Dlue in such a way that none of its finite regions Las a completely blue boundary.

Note: Results with /7 teplaced by ¢y/7t will be awarded points depending on the value of the
constant ¢.

Solution 1. (for ¢ = /1/2) Let L be the given set of lines. Choose a maximal (by inclusion)
subset B C L such that when we colour the lines of B blue, no finite region has a completely
blue boundary. Let |B| = k. We claim that &k = /n/2.

Let us colour all the lines of L\ B red. Call a point biue if it is the intersection of two blue
lines. Then there are (%) blue points.

Now consider any red line £. By the maximality of B, there exists at least one finite region
A whose only red side lies on €. Since A has at least three sides, it must have at least one blue
vertex. Let us take one such vertex and associate it to (.

Since each blue point belongs to fonr regions (some of which may be unbonnded), it is
associated to at most four red lines. Thus the total number of red lines is at most 4(3). Ou
the other hand, this number is n — &, so

n—k<2%(k—-1), thus n <2k -k <20,
and finally & > /72, which gives the desired result.

Solution 2. (for r = /2/3) We madify the proof of the first solution to show that one has in
fact k= |B| = /2n/3.

Let us make weighted associations as follows. Let a region 4 whose only red side lies on £
have & vertices, so that & —2 of them are blue. We associate each of these blue vertices to (, and
put the weight 55 on each such assoriation. So the sum of the weights of all the associations
is exactly n — k.

Now. one may cheek that among the four regions adjacent to a blue vertex v. at most two
are triangles. This means that the sum of the weights of all associations involving v is at most
141+ 4+ % =3 This leads to the estimate

k
-k<i .
n _3(2)

on < 3K — k < 3K,

or

which yiclds k > /2n/3.

Solution 3. (for ¢ = 1) Next, we even show that k = |B| = yM ). For this, we specify the
process of associating points to red lines in one more different way.

Call a point red if it lies on a red line as well as on a blue line. Consider any red line £,
and take an arbitrary finitc region A whose only red side lics on £. Let o1 by, ..., b beits
vertices in clockwise order with r',r € €, then the points r', r are red, while all the points b;.
..., by, are blue. Let us associate to £ the red point r and the blue point b;. One may notice
that to each pair of a red point r and a blue point b, at most one red line can be associated,
since there is at wost one region A having r and b as two clockwise consecutive vertices.
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We claim now that at most two red lines are associated to each hlue point b; this leads fo
the desired bound

]

k
n—k__:?() = a<k’
Assume, to the contrary, that three red lines €y, £;, and £; are associated to the same blue point
b. Let ry, rp, and ry respectively be the red points associated to these lines; all these points
are distinct. The point b defines four blue vays, and each point r; is the red point closest to b
on one of these rays. So we may assume that the points r; aud ry lie on one blue line passing

through b, while r, lies on the other one.

Now consider the region A used to associate r; and b with £ Tlaee of its cockwise
consecutive vertices are ry, b, and either rz or r3 (say, r2). Since A has only one red side, it can
only be the triangle rbry; but then both ¢, and #; pass through ry, as well as some blue line.
This is impossible by the problem assumptions.

Solution 4. (for ¢ = 1/4/5) We assign weights as in Solution 2. but apply a different (weaker)
estimate for the total weight associated to a point P. No two adjacent regions can be triangles
in view of the condition that no three lines intersect in a common point. This leaves us with
two possibilities: if only cne of the four regions surrounding P is a triangle, the total weight
is at most 1+ 3 + % + 4 = 2. Otherwise, two opposite regions have to be triangles. The two
red lines that border these triangles have to border the other two regions as well; hence these
regions have two red sides each, so they do not contribute any weight at all. In this case, the
total weight is 2. Thus we obtain the estimate

5[k
ne23(a)

which gives us n < $£ — Lk < 3k%. So k = \/4n/5, completing our proof.

Comment. There are examples of configurations with a maximal set of exactly +/n blue lines that

cannot be extended further. Hence bhe “greedy” approach starting with a maximal set cannot be nsed
to prove anyv bound better than /.

Solution 5. (for ¢ = /8/27) Let us colour each line blue with probability p = /7 (« to
be specified later). Then the expected number of blue lines is pn. On the other hand, it is well
known that the number of finite regions is (n — 1)(n — 2)/2. Each of them is bounded by blue
lines only with probability at most p®. Thercfore, the expected number of such regions is at
most p*(n — 1)(n — 2)/2. It suffices to discard one boundary line for each of these regions from
the set of blue lines to obtain a feasible choice of blue lines. The expected number of blue lines
remaining is
pn—&%j“i—_glzms—#= (E!—”—;)y?.

The maximum of the expression in brackets is \/W ohtained for a = \/2/_3 Sinee the
expected value is > /8/27Tn for this choice of ¢, there must be at least one feasible choice of

at least +/8/27n lines.

Solution 6. (for ¢ = £) The argmment of the previous solution can be improved to .27 (but no
further without additional ideas). It is known that the number of triangles is at most n(n—1)/3,
but it can be as large as n{n — 3)/3, as shown in a paper by Fiiredi and Paldsti ([2]). Thus we
can improve the estimate above to

= ; A 3 4
p'nin—=1) p'(n-1)(n-6) o ) o
= = >la—-=— - —
" 3 6 > (a—F)R-F
Now the maximum of the expression in brackets is % obtained for ¢« = 1, which finally shows
that the expected number of blue lines remaining is at least £,/n — 2. Therefore, there must
be at. least one feasible choice with /7 — § lines.

Comment. A very naive application of the probabilistic method exhibited in the previons two so-
lutions gives a bound of ¢/n: take p = (3/(2n?))/%. Then the expected number of regions having
only blue boundaries is less than n?p®/2 = %. Therefore, we obtain a feasible choice of blue lines with
probability greater than . On the other hand, the number of lines follows a binonial distribution and
is therefore concentrated around its mean. Specifically. by Chebyshev’s inequality from probability
theory, the number of lines is less than pn —n'/? with probability at most pn(n!/1)=2 = (3/2)1/3p-1/6,
which is less than } for sufficiently large n. Thus there cxists a feasible choice of at least

m— a8 = (3/2J1"3ﬂ1’f‘“‘ —alfd o plf3
blue lines for sufficiently large n.

Comment. In spite of all the different. estimates of order /7, this is not best possible. Using more
advanced methods, it is possible to get a lower bound of the form ¢y/nlogn (as shown by USA leader
Po-Shen Loh, based in particular on the results from a paper by Duke, Lefmann and Rédl ([1])).
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