

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICAL LITERACY P2 FEBRUARY/MARCH 2014

MEMORANDUM

MARKS: 150

Г

1

н

Symbol	Explanation
М	Method
M/A	Method with accuracy
CA	Consistent accuracy
А	Accuracy
С	Conversion
S	Simplification
RT/RG	Reading from a table/Reading from a graph
SF	Correct substitution in a formula
0	Opinion/Example
Р	Penalty, e.g. for no units, incorrect rounding off etc.
R	Rounding off
J	Justification/reason

This memorandum consists of 14 pages.

Copyright reserved

Please turn over

П

QUESTION 1 [31 MARKS]			
Ques	Solution	Explanation	AS/L
1.1.1	Curved area of the cylinder = $2 \times 3,14 \times 70 \text{ cm} \times 140 \text{ cm}^{\circ}\text{SF}$ = $61544 \text{ cm}^{2} \text{ CA}$	1A circumference 1SF substitution 1CA curved area	12.3.1 L3
	Area of wrap = 1,06 cm × 61 544 cm ² \checkmark M = 65 236,64 cm ² \checkmark CA OR Area of wrap: $\frac{6}{100} \times 61544$ cm ² = 3 692,64 cm ²	1A increasing by 6% 1M concept 1CA area OR	
	100 $\checkmark A$ ∴ Area of wrap = 61 544 cm ² + 3 692,64 cm ² = 65 236,64 cm ² \checkmark CA	1M concept of % 1A increasing by 6% 1CA area	
		(6)	12.3.1
1.1.2	Volume = $3,14 \times (70 \text{ cm})^2 \times 140 \text{ cm} \checkmark \text{SF}$ = 2 154 040 cm ³ $\checkmark \text{CA}$	1SF substitution 1CA simplification	L3
	Total surface area = $2 \times 3,14 \times 70 \text{ cm}(70 \text{ cm} + 140 \text{ cm})$ = $439,6 \text{ cm} \times (210 \text{ cm})$ = $92316 \text{ cm}^2 \checkmark \text{CA}$	1CA simplification	
	Volume: Total surface area = $2 \ 154 \ 040 : 92 \ 316 \checkmark M$ = $23,333 : 1$	1M writing as a ratio	
	≈ 23 : 1√CA ∴ Mathys' bales do conform. √CA	1CA ratio in required form 1CA conclusion (6)	
1.1.3	Temperature in °F = $\frac{9}{5} \times 55^\circ + 32^\circ \checkmark SF$	1SF substitution	12.3.2 L4
	$= 131^{\circ} \checkmark CA$	1CA temperature in °F	
	No, his action was not correct.	1CA verification (3)	12.1.1
1.2	1^{st} layer = 12 bales $\checkmark A$ 2^{nd} layer = 5 bales 3^{rd} layer = 4 bales $\checkmark A$ 4^{th} layer = 3 bales $\checkmark A$	1A number of bales in 1 st layer 1A number of bales in 3 rd layer 1A number of bales in last (4 th) layer	12.1.1 L3
	Total number of bales = $12 + 5 + 4 + 3\checkmark M$ = $24\checkmark CA$	1M adding 1CA simplification (5)	

Jues	Solution	Explanation	AS/L
.3.1	Max number of days = $\frac{1440 \text{ kg } \checkmark \text{A}}{12 \text{ kg/day} \times 10} \checkmark \text{A}$ = 12 days $\checkmark \text{CA}$	1A mass of each bale 1A consumption per 10 cows 1CA time taken	12.2.1 L2
	OR	OR	
	Consumption per 10 cows = $12 \text{ kg/day} \times 10$ = $120 \text{ kg/day} \checkmark \text{A}$	1A mass of each bale	
	Max number of days = $\frac{1440 \text{ kg}}{120 \text{ kg/day}} \checkmark \text{A}$	1A consumption per 10 cows	
	$= 12 \text{ days } \checkmark \text{CA}$	1CA time taken (3)	
.3.2	Max number of days = $\frac{\checkmark A}{12 \text{ kg}/\text{day} \times \text{number of cows}} \checkmark M$	1A correct values used 1M dividing	12.2.1 L3
	$= \frac{120}{\text{number of cows}} \checkmark CA$	1CA simplified formula	
	Using variables	(3)	
.3.3	MAXIMUM NUMBER OF DAYS ONE BALE WOULD LAST TO FEED A NUMBER OF COWS		12.2.2 L3
	120 100 100 80 60 40 40 20 40 40 40 40 40 40 40 40 40 4	1CA (1; 120) 3CA any other 3 points plotted correctly 1CA joining by means of a smooth curve	
	$\begin{array}{c} 10 \\ 20 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 10 \\ 10 \\ 20 \\ 30 \\ 10 \\ 10 \\ 0 \\ 0 \\ 0 \\ 10 \\ $		
		(5)	
		[31]	

	STION 2 [26 MARKS]		
Ques	Solution	Explanation	AS/L
2.1	i = 0,072; n = 5 A = R650 000(1 + 0,072) ⁵ ✓SF ✓A = R920 210,7097 ≈ R920 210,71 ✓CA	1A value of i 1SF substitution 1CA price of bus (3)	12.1.3 L3
2.2.1	Amount (in rand) \checkmark_A = 400 × number of alumni members – 1 0 OR Using symbols		12.2.1 L4
2.2.2		<u>i</u>	12.2.
	NEW SCHOOL BUS 14 000 12 000 10 000 10 000 4 000 2 000 0 5 10 Number of alumni members	A	
	 1A starting at (10 ; 4000) 1A point (20 ; 8 000) 1A any other correct point between the above two points 1A joining the points 	 1A for (20 ; 7 000) indicated by a circle 1A point (35; 13 000) 1A any other correct point between the above two points 	
2.2.3	$ \begin{array}{ccc} \checkmark \checkmark RG \\ 24 & \mathbf{OR} & \frac{8\ 600 + 1\ 000}{400} \checkmark M \\ &= 24 \checkmark CA \end{array} $	2RG reading from graph OR 1M calculation 1CA solution (2)	12.2.2 L3

Ques	Solution	Explanation	AS/L
Ques			12.1.3
2.3.1	Total amount deposited = R40 000 \times 20 \checkmark M = R800 000 \checkmark CA	1M multiplying by 20 1CA amount deposited	L3
	Total interest earned = R911 408,73 - R800 000 \checkmark M = R111 408,73 \checkmark CA	1M subtracting 1CA amount deposited quarterly (4)	
2.3.2	Amount contributed by alumni = $(400 \times 18) \times 4 + (400 \times 25 - 1\ 000) \times 12$ + $(400 \times 35 - 1\ 000) \times 4$ $\checkmark A$ = R28 800 + R108 000 + R52 000 = R188 800 $\checkmark CA$ B188 800	 1A correct value for 18 members 1A value for 25 members 1A value for 35 members 1A R108 800 1CA amount deposited 1M calculating % 	12.1.2 L2 (3) L3(3) L4(2)
	Percentage contribution = $\frac{R188\ 800}{R800\ 000} \times 100\% M$ = 23,6 % \checkmark CA His statement is not valid. \checkmark O	1CA solution 1O conclusion	
		(8)	
		[26]	

QUESTION 3 [30 MARKS]			
Ques	Solution	Explanation	AS/L
3.1.1	South East ✓ ✓ A	2A correct direction (2)	12.3.3 L2
3.1.2	 Exiting Hallmark, she must: ✓ A * turn left and walk until she reaches the end of the fountain * then turn right passing shop number 9 and then left towards entrance number 3 * then enter Cafe Teen on the right hand side ✓ A 	1A first turn and direction1A destination	12.3.3 L3
	OR	OR	
	 Exiting Hallmark, she must: * walk straight passing entrance number 1 ✓ A * then turn left at the corner and walk until she reaches the end of the fountain * then turn left passing shop number 11 and then right 	1A first turn and direction	
	 towards entrance number 3 * enter Cafe Teen on the right hand side ✓ A 	1A destination (2)	
3.1.3	Cash 4 U ✓ A	1A correct store (1)	12.3.3 L2
3.1.4	The names are not alphabetical $\checkmark J$	1J alphabetical order	12.4.2 L4
	The shops in the zones are not grouped together $\checkmark J$	1J numerical order (2)	
3.1.5	P(clothing shop) = $\frac{4}{13} \checkmark A$	1A numerator 1A denominator (2)	12.4.5 L2

Copyright reserved

Ques	Solution	Explanation	AS/L
	$2,3 \text{ m} \xrightarrow{13,9 \text{ m}} 10,4 \text{ m}$ $5,8 \text{ m} \xrightarrow{10,4 \text{ m}} 10,4 \text{ m}$ Total floor space = area of rectangle – area of triangle $= \text{ length} \times \text{breadth} - \frac{1}{2} \times \text{base} \times \text{height}$ $= 13,9 \text{ m} \times 10,4 \text{ m} - \frac{1}{2} \times 8,1 \text{ m} \times 8,1 \text{m}$ $= 144,56 \text{ m}^2 - 32,805 \text{ m}^2 \checkmark \text{CA}$ $= 111,76 \text{ m}^2 \checkmark \text{CA}$	1M calculating height 2SF substitution 2CA simplification 1CA total floor space (6)	
3.2.2	Note: The dist between the 2 entrances allow for ± 2 mm range		12.3.3 L4
	The one horizontal measurement is 13,9 m On the question paper Hallmark is 1,2 cm \checkmark A On the question paper the distance from the northern entrance door to the southern entrance door is 9,3 cm \checkmark A \therefore total distance = $\frac{9.3}{1,2} \times 13,9 \checkmark$ M OR 1,2 cm : 13,9m $\approx 107,73$ m 1 cm = 11,583 m \therefore total distance = 9,3 × 11,583 $\approx 107,72$ m \therefore the distance is 110 metres \checkmark CA	 1A measuring the side 1A measuring the total length 1M using scale and proportion 1CA total distance Note: A range of values from 1 cm to 1,4 cm will be accepted 	
	OR The one vertical measurement is 10,4 m On the question paper the side is 0,9 cm \checkmark A On the question paper the distance from the northern entrance door to the southern entrance door is 9,3 cm \checkmark A	1A measuring the side 1A measuring the total length	
	∴ total distance = $\frac{9.3}{0.9} \times 10.4 \checkmark M$ OR 0.9 cm : 10.4 m ≈ 107.47 m 1 cm = 11.555 m	1M using scale and proportion	
	$\therefore \text{ total distance } = 9,3 \times 11,556$ $= 107,47\text{m}$ $\therefore \text{ the distance is 110 metres} \checkmark \text{CA}$	1CA total distance Note: A range of values from 0,7 cm to 1,1 cm will be accepted	

8

9 NSC – Memorandum

Ques	Solution	Explanation	AS/L
	The other horizontal measurement is 5,8 m On the question paper Hallmark is 0,5 cm \checkmark A On the question paper the distance from the northern entrance door to the southern entrance door is 9,3 cm \checkmark A	1A measuring the side 1A measuring the total length	
	$\therefore \text{ total distance} = \frac{9.3}{0.5} \times 5.8 \checkmark \text{M} \qquad \text{OR} 0.5 \text{ cm} : 5.8 \text{ m} \checkmark \text{M}$ $\approx 107.88 \text{ m} \qquad 1 \text{ cm} = 11.6 \text{ m}$	1M using scale and proportion	
	\sim 107,00 m rem 11,0 m \therefore total distance = 9,3 × 11,6	1CA total distance	
	$\therefore \text{ the distance is 110 metres } \checkmark CA = 107,88 \text{m}$	Note: A range of values from 0,3 cm to 0,7 cm will be	
	OR	accepted	
	The other vertical measurement is 2,3 m On the question paper Hallmark is 0,2 cm \checkmark A On the question paper the distance from the northern entrance door to the southern entrance door is 9,3 cm \checkmark A	1A measuring the side1A measuring the totallength1M using scale and	
	$\therefore \text{ total distance} = \frac{9.3}{0.2} \times 2.3 \checkmark \text{M} \qquad \text{OR} 0.2 \text{ cm} : 2.3 \text{ m} \checkmark \text{M}$	proportion	
	$\approx 106,95 \text{ m}$ 1 cm = 11,5 m	1CA total distance	
	∴ total distance = 9.3×11.5 $\approx 106,95m$ ∴ the distance is 110 metres ✓CA	Note: A range of values from 0,1 cm to 0,4 cm will be accepted	
		(4)	
3.2.3	The area of the curtain = $3 \times 4 = 12 \text{ m}^2 \checkmark \text{A}$	1A curtain area	12.3.2 L4
	The weight of the curtain = 4,7 kg/m ² × 12 m ² = 56,4 kg \checkmark CA	1CA curtain weight	
	Cost of a curtain material = R12,50/kg × 56,4 kg \checkmark M = R705 \checkmark CA	1M multiplying 1CA cost of curtain material	
	The cost does NOT exceed R800.✓O	10 opinion (5)	
3.3.1	Friday $\checkmark A$ Data for week 1 only started on Friday $\checkmark J$	1A correct day 1J explanation (2)	12.4.4 L4
3.3.2	The number of people visiting the Mall on Friday, Saturday and Sunday is the highest. $\checkmark \checkmark J$	2J correct justification (2)	12.4.4 L4
3.3.3	$\checkmark A$ $\checkmark A$ Week 4, Thursday	1A correct week 1A correct day (2)	12.4.4 L4
	ht reserved	[30]	

Copyright reserved

Please turn over

QUES	TION 4 [38 MARKS]	1	
Ques	Solution	Explanation	AS/L
4.1.1	Percentage of blacks = $79,6\% \checkmark A$ Black population in $2011 = 79,6\%$ of $51\ 770\ 560 \checkmark M$	1A correct percentage 1M using percentage	12.1.1 L3
	$= \frac{79.6}{100} \times 51\ 770\ 560$ = 41\ 209\ 365.76 \sqccc CA \approx 41\ 209\ 366\ or \ 41\ 209\ 365\ \scrcc R	1CA black population 1R rounding (up or down) (4)	
4.1.2	Number of whites = $\frac{9.6}{100} \times 44\ 819\ 778$ \checkmark M/A	1M/A using percentage	12.4.1 L2(3) L3(2)
	= 4 302 698,688 ✓ CA	1CA white population	
	Number of white males = $\frac{48,36}{100} \times 4\ 302\ 699$ \checkmark M/A = 2 080 785,086	1M/A using percentage of white males	
	≈ 2080785 ,080 ≈ 2080785 ✓ CA	1CA simplification	
	Thandi's calculation is NOT correct. $\checkmark J$	1J verification (5)	
4.1.3	Indian population in $2001 = 1\ 120\ 494\checkmark A$ Indian population in $2011 = 1\ 294\ 264 \checkmark A$ \therefore Thandi's comment is not correct (the population increased)	 1A number of Indians in 2001 1A number of Indians in 2011 1J conclusion (3) 	12.4.4 L4
4.2.1 (a)	Population in 2001 = 21 434 041 + 23 385 737 = 44 819 778 \checkmark A	1A population in 2001	12.1.1 L3
	$\mathbf{A} = 44\ 819\ 778 - (14\ 365\ 288 + 2\ 215\ 211)$ $= 28\ 239\ 279 \checkmark CA$	1CA simplification (2)	
4.2.1 (b)	Male : female = 1 : 1,08 \checkmark M OR \checkmark CA \checkmark CA 48 males and 52 females = 48 males \checkmark CA \therefore 52 females \checkmark CA \therefore 52 females \checkmark CA	1M ratio 1CA males 1CA females	12.1.1 L4
		(3)	

Ques	Solution	Explanation	AS/L
4.2.2 (a)	Dependency % (in 2011) $= \frac{n + m}{p} \times 100\%$ $= \frac{15100089 + 2765991}{33904480} \times 100\% \checkmark SF$ $= 52,695\%$ $\approx 52,70\%$	1SF substituting correct values 1A simplification	12.4.1 L2
	Dependency % (1996) = $\frac{n + m}{p} \times 100\%$ = $\frac{13\ 766\ 443\ +\ 1\ 934\ 664}{24\ 882\ 465} \times 100\%$ \checkmark SF = $63,101\%$ $\approx 63,10\%$ $\rbrace \checkmark$ CA Difference = $63,10\% - 52,70\%$ = $10,4\%$ \checkmark CA	1SF substituting correct values 1CA simplification 1CA difference (5)	
4.2.2 (b)	The dependency % decreased because there are more people in the category (P) $15 - 64$ years. $\checkmark \checkmark J$ OR Technology became more advanced. $\checkmark \checkmark J$ OR Improved medication $\checkmark \checkmark J$ OR Improvement in health $\checkmark \checkmark J$ OR The receiving of social grants $\checkmark \checkmark J$ OR Any other valid reason $\checkmark \checkmark J$	2J opinion (2)	12.4.4 L4
4.3.1	Range = 1 290 - P $\checkmark M \checkmark A$ 569 = 1 290 - P $\checkmark M \checkmark A$ OR P = 1 290 - 569 $\therefore P = 721 \checkmark CA$ = 721 $\checkmark CA$	(2) 1M concept of range 1A correct values used 1CA solution (3)	12.4.3 L3

Ques	Solution	Explanation	AS/L
4.3.2	Mean $\checkmark M$ $\checkmark A$ = $\frac{814+921+1\ 201+1\ 290+Q+966+864+721+828+829}{10}$ = $\frac{8434+Q}{10}$	1A correct values used 1M concept of Mean	12.4.3 L3
	$936 = \frac{8434 + Q}{10}$ $Q = (936 \times 10) - 8434$		
	$= 9360 - 8434 \checkmark S$	1S simplifying	
	= 926 ✓CA	1CA solution (4)	
4.3.3	721; 814; 828; 829; 864; 921; 926; 966; 1 201; 1 290 ✓M	1M arranging	12.4.3 L3
	$Median = \frac{864 + 921}{2} \checkmark M$	1M concept of median	
	$= 892,5$ $\approx 893 \qquad \checkmark CA$	1CA solution (3)	
4.3.4	The sample is not representative of all the schools in South Africa. $\checkmark \checkmark J$	2J reason	12.4.4 L4
	The sample is too small compared to the number of schools in the country.	2J reason	
	OR		
	Any other suitable reasons.		
		(4)	
		[38]	

QUES	TION 5 [25 MARKS]		
Ques	Solution	Explanation	AS/L
5.1.1	Loan amount = (Monthly payment \div loan factor) \times 1 000 = (R17 550 \div 13,00) \times 1 000 \checkmark SF	1M subject of formula 1A loan factor 1SF substitution	12.2.1 L3
	$=$ R1 350 000 \checkmark CA	1CA solution (4)	
5.1.2	She needs to have extra money available per month, for other expenses. $\checkmark \checkmark J$	2J reason	12.1.3 L4
	She will pay more on interest. $\checkmark \checkmark J$	2J reason	
	OR Any other valid reason	(4)	
5.2.1	STL Bank: \checkmark SF Monthly payment = (1 100 000 ÷ 1 000) × 13,91 \checkmark A = R15 301 \checkmark CA \therefore Total repayment = R15 301 × 240 \checkmark M = R3 672 240 \checkmark CA	1SF substitution 1A using correct factor 1CA monthly payment 1M multiplying by 240 1CA final amount	12.1.1 12.1.3 12.2.1 L2 (3) L3(2) L4(3)
	Pragashni should rather take STL Bank's deal. $\checkmark O$ Although the interest rate is higher, the year term is shorter and the total repayment amount is R4 290 000 – R3 672 240 = R617 760 less. $\checkmark \checkmark J$	10 choice 2J reason with calculation	
	OR	OR	
		1SF substitution 1A using correct factor 1CA monthly payment 1SF substitution into	
	$= R14\ 300\ \checkmark CA$	formula 1CA monthly payment	
	✓O Pragashni should take EP bank his monthly instalment will be reduced by R15 301 – 14 300 = R1 001. ✓✓J	10 choice 2J reason with calculation (8)	

Ques	Solution	Explanation	AS/L
5.2.2	Loan factor = $\frac{\text{Monthly payment}}{\text{Loan amount}} \times 1000^{\checkmark \text{M}}$	1M manipulation	12.1.3 12.2.1 L4
	$= \frac{\mathbf{R}13\ 255}{\mathbf{R}1\ 100\ 000} \times 1\ 000 \checkmark \mathrm{SF}$	1SF substitution 1CA factor	
	= 12,05 \checkmark CA \checkmark CA \therefore the interest rate will be 14,25% over a period of 30 years	1CA interest 1CA period (5)	
5.3	Line C represents a 16% interest rate. ✓A Line B represents a 14,25% interest rate. ✓A	1A graph C 1A graph B	12.2.3 L4
	The higher the interest rate, the higher your total repayment will be. $\checkmark \checkmark J$	2J reason	
	OR	OR	
	The higher the interest rate, the steeper the graph. $\checkmark \checkmark J$	2J reason (4)	
		[25]	

TOTAL: 150