basic education

Department:

Basic Education REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICAL LITERACY P2

FEBRUARY/MARCH 2014

MEMORANDUM

MARKS: 150

Symbol	Explanation
M	Method
M/A	Method with accuracy
CA	Consistent accuracy
A	Accuracy
C	Conversion
S	Simplification
RT/RG	Reading from a table/Reading from a graph
SF	Correct substitution in a formula
O	Opinion/Example
P	Penalty, e.g. for no units, incorrect rounding off etc.
R	Rounding off
J	Justification/reason

This memorandum consists of $\mathbf{1 4}$ pages.

QUESTION 1 [31 MARKS]			
Ques	Solution	Explanation	AS/L
1.1.1	$\begin{array}{rl} \text { Curved area of the cylinder } & =2 \times 3,14 \times 70 \mathrm{~cm} \times 140 \mathrm{~cm}^{\checkmark} \mathrm{SF} \\ & =61544 \mathrm{~cm}^{2} \checkmark \mathrm{CA} \\ \checkmark \mathrm{~A} & \\ \text { Area of wrap }=1,06 \mathrm{~cm} \times & 61544 \mathrm{~cm}^{2} \quad \checkmark \mathrm{M} \\ =65 & 236,64 \mathrm{~cm}^{2} \checkmark \mathrm{CA} \end{array}$ OR Area of wrap: $\frac{6}{100} \times 61544 \mathrm{~cm}^{2}=3692,64 \mathrm{~cm}^{2}$ $\begin{aligned} \therefore \text { Area of wrap } & =61544 \mathrm{~cm}^{2}+3692,64 \mathrm{~cm}^{2} \\ & =65236,64 \mathrm{~cm}^{2} \checkmark \mathrm{CA} \end{aligned}$	1A circumference 1SF substitution 1CA curved area 1 A increasing by 6% 1M concept 1CA area OR 1M concept of \% 1 A increasing by 6% 1CA area	$\begin{array}{\|l\|} \hline 12.3 .1 \\ \hline \end{array}$
1.1.2	$\begin{aligned} \text { Volume } & =3,14 \times(70 \mathrm{~cm})^{2} \times 140 \mathrm{~cm}^{\checkmark} \mathrm{SF} \\ & =2154040 \mathrm{~cm}^{3} \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Total surface area } & =2 \times 3,14 \times 70 \mathrm{~cm}(70 \mathrm{~cm}+140 \mathrm{~cm}) \\ & =439,6 \mathrm{~cm} \times(210 \mathrm{~cm}) \\ & =92316 \mathrm{~cm}^{2} \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Volume: Total surface area } & =2154040: 92316^{\checkmark \mathrm{M}} \\ & =23,333: 1 \\ & \approx 23: 1^{\checkmark} \mathrm{CA} \end{aligned}$ \therefore Mathys' bales do conform. \checkmark CA	1SF substitution 1CA simplification 1CA simplification 1 M writing as a ratio 1CA ratio in required form 1CA conclusion	$\begin{array}{\|l} \hline 12.3 .1 \\ \text { L3 } \end{array}$
1.1.3	Temperature in $\begin{aligned} { }^{\circ} \mathrm{F} & =\frac{9}{5} \times 55^{\circ}+32^{\circ} \checkmark \mathrm{SF} \\ & =131^{\circ} \checkmark \mathrm{CA} \end{aligned}$ \checkmark CA No, his action was not correct.	1SF substitution 1CA temperature in ${ }^{\circ} \mathrm{F}$ 1CA verification	$\begin{aligned} & 12.3 .2 \\ & \text { L4 } \end{aligned}$
1.2	$\begin{aligned} & 1^{\text {st }} \text { layer }=12 \text { bales } \checkmark \mathrm{A} \\ & 2^{\text {nd }} \text { layer }=5 \text { bales } \\ & 3^{\text {rd }} \text { layer }=4 \text { bales } \checkmark \mathrm{A} \\ & 4^{\text {th }} \text { layer }=3 \text { bales } \checkmark \mathrm{A} \end{aligned}$ $\begin{aligned} \text { Total number of bales } & =12+5+4+3 \checkmark \mathrm{M} \\ & =24 \checkmark \mathrm{CA} \end{aligned}$	1A number of bales in $1^{\text {st }}$ layer 1A number of bales in $3^{\text {rd }}$ layer 1A number of bales in last ($\left.4^{\text {th }}\right)$ layer 1 M adding 1CA simplification	$\begin{array}{\|l} \hline 12.1 .1 \\ \text { L3 } \end{array}$

Ques	Solution	Explanation	AS/L
1.3.1	$\begin{aligned} \text { Max number of days } & =\frac{1440 \mathrm{~kg} \checkmark \mathrm{~A}}{12 \mathrm{~kg} / \text { day } \times 10 \checkmark \mathrm{~A}} \\ & =12 \text { days } \checkmark \mathrm{CA} \end{aligned}$ OR $\begin{aligned} & \text { Consumption per } \begin{aligned} 10 \text { cows } & =12 \mathrm{~kg} / \text { day } \times 10 \\ & =120 \mathrm{~kg} / \text { day } \checkmark \mathrm{A} \end{aligned} \\ & \begin{aligned} \text { Max number of days } & =\frac{1440 \mathrm{~kg}}{120 \mathrm{~kg} / \text { day }} \checkmark \mathrm{A} \\ & =12 \text { days } \checkmark \mathrm{CA} \end{aligned} \end{aligned}$	1A mass of each bale 1A consumption per 10 cows 1CA time taken OR 1A mass of each bale 1A consumption per 10 cows 1CA time taken	$\begin{aligned} & \hline 12.2 .1 \\ & \text { L2 } \end{aligned}$
1.3.2	$\begin{aligned} \text { Max number of days } & =\frac{\checkmark \mathrm{A}}{12 \mathrm{~kg} / \text { day } \times \text { number of cows }} \checkmark \mathrm{M} \\ & =\frac{120}{\text { number of cows }} \checkmark \mathrm{CA} \end{aligned}$ OR Using variables	1A correct values used 1 M dividing 1CA simplified formula	$\begin{aligned} & \hline 12.2 .1 \\ & \text { L3 } \end{aligned}$
1.3.3	maximumnumber of days one bale would last to feed a number of cows	1CA (1; 120) 3CA any other 3 points plotted correctly 1CA joining by means of a smooth curve	$\begin{aligned} & \hline 12.2 .2 \\ & \text { L3 } \end{aligned}$
		[31]	

QUESTION 2 [26 MARKS]			
Ques	Solution	Explanation	AS/L
2.1	$\begin{aligned} \mathrm{i} & =0,072 ; \mathrm{n}=5 \\ \mathrm{~A} & =\mathrm{R} 650000(1+0,072)^{5} \checkmark \mathrm{SF} \checkmark \mathrm{~A} \\ & =\mathrm{R} 920210,7097 \\ & \approx \mathrm{R} 920210,71 \checkmark \mathrm{CA} \end{aligned}$	1A value of i 1SF substitution 1CA price of bus	$\begin{aligned} & 12.1 .3 \\ & \text { L3 } \end{aligned}$
2.2.1	Amount (in rand) $\quad \checkmark \mathrm{A} \quad \checkmark \mathrm{A}$ $=400 \times$ number of alumni members -1000	1 A multiplying number by 400 1 A subtracting 1000	$12.2 .1$
2.2.2	QUARTERLY CONTRIBUTION TOWARDS BUYING A NEW SCHOOL BUS		$\begin{aligned} & \hline 12.2 . \\ & \text { L3 } \end{aligned}$
		(7)	
2.2.3	$$	2 RG reading from graph OR 1M calculation 1CA solution	$\begin{aligned} & \hline 12.2 .2 \\ & \text { L3 } \end{aligned}$

Ques	Solution	Explanation	AS/L
2.3.1	$\begin{aligned} \text { Total amount deposited } & =\mathrm{R} 40000 \times 20 \checkmark \mathrm{M} \\ & =\mathrm{R} 800000 \checkmark \mathrm{CA} \\ \text { Total interest earned } & =\mathrm{R} 911408,73-\mathrm{R} 800000 \checkmark \mathrm{M} \\ & =\mathrm{R} 111408,73 \checkmark \mathrm{CA} \end{aligned}$	1M multiplying by 20 1CA amount deposited 1M subtracting 1CA amount deposited quarterly	$12.1 .3$
2.3.2	Amount contributed by alumni $\begin{aligned} & \quad \begin{array}{l} \checkmark \mathrm{A} \quad \checkmark \mathrm{~A} \\ =(400 \times 18) \times 4+(400 \times 25-1000) \times 12 \\ \\ +(400 \times 35-1000) \times 4 \\ \checkmark \mathrm{~A} \end{array} \\ & \checkmark \mathrm{~A} \\ & =\mathrm{R} 28800+\mathrm{R} 108000+\mathrm{R} 52000 \\ & =\mathrm{R} 188800 \checkmark \mathrm{CA} \end{aligned} \quad \begin{aligned} \text { Percentage contribution } & =\frac{\mathrm{R} 188800}{\mathrm{R} 800000} \times 100 \% \checkmark \mathrm{M} \\ & =23,6 \% \checkmark \mathrm{CA} \end{aligned}$ His statement is not valid. $\checkmark \mathrm{O}$	1A correct value for 18 members 1 A value for 25 members 1A value for 35 members 1A R108 800 1CA amount deposited 1 M calculating \% 1CA solution 10 conclusion	$\begin{align*} & \text { 12.1.2 } \tag{4}\\ & \text { L2 (3) } \\ & \text { L3(3) } \\ & \text { L4(2) } \end{align*}$
		[26]	

QUESTION 3 [30 MARKS]			
Ques	Solution	Explanation	AS/L
3.1.1	South East $\checkmark \checkmark$ A	2A correct direction (2)	$12.3 .3$
3.1.2	Exiting Hallmark, she must: * turn left and walk until she reaches the end of the fountain * then turn right passing shop number 9 and then left towards entrance number 3 * then enter Cafe Teen on the right hand side \checkmark A OR Exiting Hallmark, she must: * walk straight passing entrance number $1 \checkmark$ A * then turn left at the corner and walk until she reaches the end of the fountain then turn left passing shop number 11 and then right towards entrance number 3 * enter Cafe Teen on the right hand side \checkmark A	1A first turn and direction 1A destination OR 1A first turn and direction 1A destination	$\begin{aligned} & 12.3 .3 \\ & \text { L3 } \end{aligned}$
3.1.3	Cash $4 \mathrm{U}^{\checkmark} \mathrm{A}$	1A correct store	$\begin{aligned} & \hline 12.3 .3 \\ & \mathrm{~L} 2 \end{aligned}$
3.1.4	The names are not alphabetical ${ }^{\checkmark}$ J The shops in the zones are not grouped together $\checkmark \mathrm{J}$	1J alphabetical order 1 J numerical order (2)	$\begin{aligned} & \hline 12.4 .2 \\ & \text { L4 } \end{aligned}$
3.1.5	$\mathrm{P}($ clothing shop $)=\frac{4}{13}$ 洔 A	1A numerator 1A denominator (2)	$\begin{aligned} & 12.4 .5 \\ & \text { L2 } \end{aligned}$

Ques	Solution	Explanation	AS/L
3.2.1	Total floor space $=$ area of rectangle + area of trapezium $\begin{aligned} & =\text { length } \times \text { breadth }+\frac{1}{2}(\text { sum of parallels }) \times \text { height } \\ & \checkmark \checkmark \text { SF } \\ & =5,8 \mathrm{SF} \times 10,4 \mathrm{~m}+\frac{1}{2}(2,3 \mathrm{~m}+10,4 \mathrm{~m}) \times 8,1 \mathrm{~m} \\ & \checkmark \mathrm{CA} \\ & =60,32 \mathrm{~m}^{2}+51,44 \mathrm{~m}^{2}=111,76 \mathrm{~m}^{2} \checkmark \mathrm{CA} \end{aligned}$ OR Total floor space $=$ area of rectangle + area of trapezium $\begin{aligned} & =\text { length } \times \text { breadth }+\frac{1}{2} \text { (sum of parallels) } \times \text { height } \\ & \checkmark \checkmark \text { SF } \\ & =13,9 \mathrm{SF} \times 2,3 \mathrm{~m}+\frac{1}{2}(13,9 \mathrm{~m}+5,8 \mathrm{~m}) \times 8,1 \mathrm{~m} \\ & =\sqrt{\vee} \times \mathrm{CA}^{2} \times 79,79 \mathrm{CA}^{2}=111,76 \mathrm{~m}^{2} \checkmark \mathrm{CA} \end{aligned}$ OR Total floor space $=$ area of big rectangle + area of smaller rectangle + area of triangle $\begin{aligned} & =\text { length } \times \text { breadth }+ \text { length } \times \text { breadth }+\frac{1}{2} \times \text { base } \times \text { height } \\ & \quad \checkmark \mathrm{SF} \\ & =10,4 \mathrm{~m} \times 5,8 \mathrm{~m}+2,3 \mathrm{~m} \times 8,1+\frac{1}{2} \times \mathrm{SF} \quad \checkmark \mathrm{~S}, 1 \times 8,1 \\ & =60,32 \mathrm{~m}^{2}+18,63 \mathrm{~m}^{2}+32,81 \mathrm{~m}^{2} \\ & =111,76 \mathrm{~m}^{2} \checkmark \mathrm{CA} \end{aligned}$ OR	1M calculating height 2 SF substitution into correct formulae 2CA simplifying 1CA total floor space OR 1M calculating height 2SF substitution 2CA simplification 1CA total floor space 1M calculating height 2SF substitution 2CA simplification 1CA total floor space	$\begin{aligned} & 12.3 .1 \\ & \text { L2 (3) } \\ & \text { L3 (2) } \end{aligned}$

Ques	Solution	Explanation	AS/L
	$\begin{aligned} \text { Total floor space } & =\text { area of rectangle }- \text { area of triangle } \\ & =\text { length } \times \text { breadth }-\frac{1}{2} \times \text { base } \times \text { height } \\ & \checkmark \text { SF } \\ & =13,9 \mathrm{~m} \times 10,4 \mathrm{~m}-\frac{1}{2} \times 8,1 \mathrm{SF} \times 8,1 \mathrm{~m} \\ & =144,5 \mathrm{CA} \mathrm{~m}^{2}-32,805 \mathrm{~m}^{2} \checkmark \mathrm{CA} \\ & =111,76 \mathrm{~m}^{2} \checkmark \mathrm{CA} \end{aligned}$	1 M calculating height 2SF substitution 2CA simplification 1CA total floor space	
3.2.2	Note: The dist between the 2 entrances allow for $\pm \mathbf{2 m m}$ range		$\begin{aligned} & \hline 12.3 .3 \\ & \text { L4 } \end{aligned}$
	The one horizontal measurement is $13,9 \mathrm{~m}$ On the question paper Hallmark is $1,2 \mathrm{~cm} \checkmark \mathrm{~A}$ On the question paper the distance from the northern entrance door to the southern entrance door is $9,3 \mathrm{~cm} \checkmark \mathrm{~A}$ $\begin{array}{rlrl} \therefore \text { total distance } & =\frac{9,3}{1,2} \times 13,9 \checkmark \mathrm{M} & \text { OR } 1,2 \mathrm{~cm}: 13,9 \mathrm{~m} \\ & \approx 107,73 \mathrm{~m} & 1 \mathrm{~cm}=11,583 \mathrm{~m} \end{array}$	1A measuring the side 1A measuring the total length 1 M using scale and proportion 1CA total distance	
	$\begin{aligned} \therefore \text { total distance } & =9,3 \times 11,583 \\ & \approx 107,72 \mathrm{~m} \end{aligned}$ \therefore the distance is 110 metres \checkmark CA	Note: A range of values from 1 cm to $1,4 \mathrm{~cm}$ will be accepted	
	The one vertical measurement is $10,4 \mathrm{~m}$ On the question paper the side is $0,9 \mathrm{~cm} \checkmark \mathrm{~A}$ On the question paper the distance from the northern entrance door to the southern entrance door is $9,3 \mathrm{~cm} \checkmark \mathrm{~A}$	1A measuring the side 1A measuring the total length	
	$\begin{aligned} & \therefore \text { total distance }=\frac{9,3}{0,9} \times 10,4 \checkmark \mathrm{M} \quad \text { OR } 0,9 \mathrm{~cm}: 10,4 \mathrm{~m} \\ & \approx 107,47 \mathrm{~m} \quad 1 \mathrm{~cm}=11,555 . . \mathrm{m} \\ & \therefore \text { total distance }=9,3 \times 11,556 \\ &=107,47 \mathrm{~m} \end{aligned}$	1 M using scale and proportion 1CA total distance	
	\therefore the distance is 110 metres \checkmark CA OR	Note: A range of values from $0,7 \mathrm{~cm}$ to $1,1 \mathrm{~cm}$ will be accepted	

Ques	Solution	Explanation	AS/L
	The other horizontal measurement is $5,8 \mathrm{~m}$ On the question paper Hallmark is $0,5 \mathrm{~cm} \quad \checkmark \mathrm{~A}$ On the question paper the distance from the northern entrance door to the southern entrance door is $9,3 \mathrm{~cm} \quad \checkmark \mathrm{~A}$ $\begin{aligned} & \therefore \text { total distance }=\frac{9,3}{0,5} \times 5,8 \checkmark \mathrm{M} \quad \text { OR } 0,5 \mathrm{~cm}: 5,8 \mathrm{~m} \quad \checkmark \mathrm{M} \\ & \approx 107,88 \mathrm{~m} \quad 1 \mathrm{~cm}=11,6 \mathrm{~m} \\ & \therefore \text { total distance }=9,3 \times 11,6 \\ &=107,88 \mathrm{~m} \end{aligned}$ \therefore the distance is 110 metres $\checkmark \mathrm{CA}$ OR The other vertical measurement is $2,3 \mathrm{~m}$ On the question paper Hallmark is $0,2 \mathrm{~cm} \checkmark \mathrm{~A}$ On the question paper the distance from the northern entrance door to the southern entrance door is $9,3 \mathrm{~cm} \quad \checkmark \mathrm{~A}$ $\begin{aligned} & \therefore \text { total distance }=\frac{9,3}{0,2} \times 2,3 \checkmark \mathrm{M} \quad \text { OR } 0,2 \mathrm{~cm}: 2,3 \mathrm{~m} \checkmark \mathrm{M} \\ & \approx 106,95 \mathrm{~m} \quad 1 \mathrm{~cm}=11,5 \mathrm{~m} \\ & \therefore \text { total distance }=9,3 \times 11,5 \\ & \approx 106,95 \mathrm{~m} \end{aligned}$ \therefore the distance is 110 metres $\checkmark \mathrm{CA}$	1A measuring the side 1A measuring the total length 1 M using scale and proportion 1CA total distance Note: A range of values from $0,3 \mathrm{~cm}$ to $0,7 \mathrm{~cm}$ will be accepted 1A measuring the side 1A measuring the total length 1 M using scale and proportion 1CA total distance Note: A range of values from $0,1 \mathrm{~cm}$ to $0,4 \mathrm{~cm}$ will be accepted	
3.2.3	$\begin{aligned} \text { The area of the curtain }=3 & \times 4=12 \mathrm{~m}^{2} \quad \checkmark \mathrm{~A} \\ \text { The weigth of the curtain } & =4,7 \mathrm{~kg} / \mathrm{m}^{2} \times 12 \mathrm{~m}^{2} \\ & =56,4 \mathrm{~kg} \checkmark \mathrm{CA} \\ \text { Cost of a curtain material } & =\mathrm{R} 12,50 / \mathrm{kg} \times 56,4 \mathrm{~kg} \checkmark \mathrm{M} \\ & =\mathrm{R} 705 \checkmark \mathrm{CA} \end{aligned}$ The cost does NOT exceed R800. \checkmark O	1A curtain area 1CA curtain weight 1M multiplying 1CA cost of curtain material 10 opinion	$\begin{aligned} & 12.3 .2 \\ & \text { L4 } \end{aligned}$
3.3.1	Friday $\checkmark \mathrm{A}$ Data for week 1 only started on Friday \checkmark J	1A correct day 1J explanation	$\begin{aligned} & \hline 12.4 .4 \\ & \text { L4 } \end{aligned}$
3.3.2	The number of people visiting the Mall on Friday, Saturday and Sunday is the highest. $\quad \checkmark \checkmark \mathrm{J}$	2J correct justification	12.4.4
3.3.3	$\stackrel{\vee \mathrm{A}}{\stackrel{\vee}{\mathrm{~A}}} \stackrel{\text { Week } 4, \text { Thursday }}{ }$	1A correct week 1A correct day	$\begin{aligned} & \hline 12.4 .4 \\ & \text { L4 } \\ & \hline \end{aligned}$
		[30]	

QUESTION 4 [38 MARKS]			
Ques	Solution	Explanation	AS/L
4.1.1	$\text { Percentage of blacks }=79,6 \% \checkmark \mathrm{~A}$ $\begin{aligned} \text { Black population in } 2011 & =79,6 \% \text { of } 51770560 \checkmark \mathrm{M} \\ & =\frac{79,6}{100} \times 51770560 \\ & =41209365,76 \checkmark \mathrm{CA} \\ & \approx 41209366 \text { or } 41209365 \checkmark \mathrm{R} \end{aligned}$	1A correct percentage 1 M using percentage 1CA black population 1 R rounding (up or down)	$\begin{array}{\|l} \hline 12.1 .1 \\ \text { L3 } \end{array}$
4.1.2	$\begin{aligned} & \text { Number of whites }=\frac{9,6}{100} \times 44819778 \quad \checkmark \mathrm{M} / \mathrm{A} \\ & \\ & =4302698,688 \checkmark \mathrm{CA} \\ & \begin{aligned} \text { Number of white males } & =\frac{48,36}{100} \times 4302699 \quad \checkmark \mathrm{M} / \mathrm{A} \\ & =2080785,086 \\ & \approx 2080785^{\checkmark} \mathrm{CA} \end{aligned} \end{aligned}$ Thandi's calculation is NOT correct. $\checkmark \mathrm{J}$	1M/A using percentage 1CA white population 1M/A using percentage of white males 1CA simplification 1 J verification	$\begin{aligned} & \hline 12.4 .1 \\ & \text { L2(3) } \\ & \text { L3(2) } \end{aligned}$
4.1.3	Indian population in $2001=1120494 \checkmark \mathrm{~A}$ Indian population in $2011=1294264 \quad \checkmark \mathrm{~A}$ \therefore Thandi's comment is not correct (the population increased)	1A number of Indians in 2001 1A number of Indians in 2011 1 J conclusion	$\begin{array}{\|l} \hline 12.4 .4 \\ \text { L4 } \\ \hline \end{array}$
4.2.1 (a)	$\begin{aligned} \text { Population in } \begin{aligned} 2001 & =21434041+23385737 \\ & =44819778 \checkmark \mathrm{~A} \\ \mathbf{A} & =44819778-(14365288+2215211) \\ & =28239279 \checkmark \mathrm{CA} \end{aligned} \end{aligned}$	1A population in 2001 1CA simplification (2)	$\begin{array}{\|l} \hline 12.1 .1 \\ \text { L3 } \end{array}$
4.2.1 (b)	$\begin{array}{\|lll} \text { Male }: \text { female }=1: 1,08 \checkmark \mathrm{M} \text { OR } & 100: 108 \checkmark \mathrm{M} \\ \checkmark \vee \mathrm{CA} \\ 48 \mathrm{males} \text { and } 52 \text { females } & & =\frac{100}{208} \times 100 \\ & & =48 \text { males } \checkmark \mathrm{CA} \\ & \therefore 52 \text { females } \checkmark \mathrm{CA} \end{array}$	1M ratio 1CA males 1CA females	$\begin{array}{\|l} \hline 12.1 .1 \\ \text { L4 } \end{array}$

Ques	Solution	Explanation	AS/L
4.2.2 (a)	Dependency \% (in 2011) $\left.\begin{array}{l} =\frac{\boldsymbol{n}+\boldsymbol{m}}{\boldsymbol{p}} \times \mathbf{1 0 0} \% \\ =\frac{15100089+2765991}{33904480} \times 100 \% \checkmark \mathrm{SF} \\ =52,695 \ldots \% \\ \approx 52,70 \% \end{array}\right\} \checkmark \mathrm{A} .$ Dependency \% (1996) $\left.\begin{array}{l} =\frac{\boldsymbol{n}+\boldsymbol{m}}{\boldsymbol{p}} \times \mathbf{1 0 0} \% \\ =\frac{13766443+1934664}{24882465} \times 100 \% \\ =63,101 \ldots \% \\ \approx 63,10 \% \end{array}\right\} \checkmark \mathrm{CA} \quad \mathrm{SF}$ $\begin{aligned} \text { Difference } & =63,10 \%-52,70 \% \\ & =10,4 \% \checkmark \mathrm{CA} \end{aligned}$	1SF substituting correct values 1A simplification 1SF substituting correct values 1CA simplification 1CA difference	$\begin{aligned} & \hline 12.4 .1 \\ & \text { L2 } \end{aligned}$
4.2.2 (b)	The dependency $\%$ decreased because there are more people in the category (P) $15-64$ years. $\quad \checkmark \checkmark \mathrm{J}$ OR Technology became more advanced. ${ }^{\checkmark \checkmark \mathrm{J}}$ OR Improved medication $\checkmark \checkmark$ J OR Improvement in health $\checkmark \checkmark$ J OR The receiving of social grants $\checkmark \checkmark$ J OR Any other valid reason $\checkmark \checkmark$ J	2J opinion	$\begin{aligned} & \hline 12.4 .4 \\ & \text { L4 } \end{aligned}$
4.3.1	$\begin{array}{rlrl} \text { Range }=1290-\mathrm{P} & \checkmark \mathrm{M} \checkmark \mathrm{~A} \\ 569=1290-\mathrm{P} \checkmark \mathrm{M} \checkmark \mathrm{~A} & \text { OR } \mathrm{P}=1290-569 \\ \therefore \mathrm{P}=721 \checkmark \mathrm{CA} & & =721^{\checkmark} \mathrm{CA} \end{array}$	1 M concept of range 1A correct values used 1CA solution	$\begin{align*} & \hline 12.4 .3 \tag{2}\\ & \text { L3 } \end{align*}$

Ques	Solution	Explanation	AS/L
4.3.2	$\begin{aligned} & \begin{array}{l} \text { Mean } \\ = \\ =\frac{814+921+1}{} 201+1290+\mathrm{Q}+966+864+721+828+829 \\ = \\ \hline \end{array} \\ & 936=\frac{8434+\mathrm{Q}}{10} \\ & \mathrm{Q}=(936 \times 10)-8434 \\ & =9360-8434 \checkmark \mathrm{~S} \\ & \quad=926 \checkmark \mathrm{CA} \end{aligned}$	1A correct values used 1 M concept of Mean 1S simplifying 1CA solution	$\begin{aligned} & \hline 12.4 .3 \\ & \mathrm{~L} 3 \end{aligned}$
4.3.3	$\begin{aligned} & 721 ; 814 ; 828 ; 829 ; 864 ; 921 ; 926 ; 966 ; 1201 ; 1290 \checkmark \mathrm{M} \\ & \left.\begin{array}{rl} \text { Median } & =\frac{864+921}{2} \checkmark \mathrm{M} \\ & =892,5 \\ & \approx 893 \end{array}\right\} \checkmark \mathrm{CA} \end{aligned}$	1 M arranging 1 M concept of median 1CA solution	$\begin{aligned} & \hline 12.4 .3 \\ & \text { L3 } \end{aligned}$
4.3.4	The sample is not representative of all the schools in South Africa. The sample is too small compared to the number of schools in the country. OR Any other suitable reasons.	2 J reason 2J reason	$\begin{aligned} & \hline 12.4 .4 \\ & \text { L4 } \end{aligned}$
		[38]	

QUESTION 5 [25 MARKS]			
Ques	Solution	Explanation	AS/L
5.1.1	$\begin{aligned} \text { Loan amount } & =(\text { Monthly payment } \div \text { loan factor }) \times 1000 \\ & =(\mathrm{R} 17550 \div 13,00) \times 1000 \checkmark \mathrm{SF} \\ & =\mathrm{R} 1350000 \checkmark \mathrm{CA} \end{aligned}$	1M subject of formula 1A loan factor 1SF substitution 1CA solution	$\begin{aligned} & \hline 12.2 .1 \\ & \text { L3 } \end{aligned}$
5.1.2	She needs to have extra money available per month, for other expenses. $\checkmark \checkmark$ J She will pay more on interest. $\checkmark \checkmark \mathrm{J}$ OR Any other valid reason	2J reason 2 J reason (4)	$\begin{array}{\|l\|} \hline 12.1 .3 \\ \text { L4 } \\ \hline \end{array}$
5.2.1	$\begin{aligned} & \text { STL Bank: } \quad \checkmark \mathrm{SF} \\ & \text { Monthly payment } \end{aligned}=\left(\begin{array}{l} 1100000 \div 1000) \times 13,91 \checkmark \mathrm{~A} \\ \\ \\ =\text { R15 301 } \checkmark \mathrm{CA} \end{array} \quad \begin{array}{rl} \therefore \text { Total repayment } & =\mathrm{R} 15301 \times 240 \checkmark \mathrm{M} \\ & =\mathrm{R} 3672240 \checkmark \mathrm{CA} \end{array}\right.$ Pragashni should rather take STL Bank's deal. $\checkmark \mathrm{O}$ Although the interest rate is higher, the year term is shorter and the total repayment amount is R4 290000 - R3 672240 $=$ R617 760 less. $\checkmark \checkmark \mathrm{J}$ OR $\begin{aligned} & \text { Monthly payment (STL Bank) }=\left(\begin{array}{l} 1100000 \div 1000) \times 13,91 \\ \\ \end{array}=\text { R15 301 } \checkmark \mathrm{CA}\right. \\ & \checkmark \text { SF } \\ & \text { Monthly payment (EP Bank) }=\left(\begin{array}{l} 1100000 \div 1000) \times 13,00 \\ \\ \end{array}=\text { R14300 } \mathrm{CA}\right. \end{aligned}$ \checkmark O Pragashni should take EP bank his monthly instalment will be reduced by R15 $301-14300=$ R1 001. $\checkmark \checkmark \mathrm{J}$	1SF substitution 1A using correct factor 1CA monthly payment 1 M multiplying by 240 1CA final amount 10 choice 2J reason with calculation OR 1SF substitution 1A using correct factor 1CA monthly payment 1SF substitution into formula 1CA monthly payment 10 choice 2 J reason with calculation	$\begin{array}{\|l\|} \hline 12.1 .1 \\ 12.1 .3 \\ 12.2 .1 \\ \text { L2 (3) } \\ \text { L3(2) } \\ \text { L4(3) } \end{array}$

Ques	Solution	Explanation	AS/L
5.2.2	$\begin{aligned} & \text { Loan factor }=\frac{\text { Monthly payment }}{\text { Loan amount }} \times \mathbf{1 0 0 0}{ }^{\checkmark \mathrm{M}} \\ &=\frac{\mathbf{R} 13255}{\mathrm{R} 1100000} \times 1000 \checkmark \mathrm{SF} \\ &=12,05 \quad \checkmark \mathrm{CA} \\ & \checkmark \mathrm{CA} \end{aligned}$ \therefore the interest rate will be $14,25 \%$ over a period of 30 years	1M manipulation 1SF substitution 1CA factor 1CA interest 1CA period	$\begin{aligned} & \text { 12.1.3 } \\ & \text { 12.2.1 } \\ & \text { L4 } \end{aligned}$
5.3	Line C represents a 16% interest rate. $\checkmark \mathrm{A}$ Line B represents a $14,25 \%$ interest rate. $\checkmark \mathrm{A}$ The higher the interest rate, the higher your total repayment will be. $\checkmark \checkmark$ J OR The higher the interest rate, the steeper the graph. $\checkmark \checkmark \mathrm{J}$	1A graph C 1A graph B 2J reason OR 2J reason	$\begin{aligned} & 12.2 .3 \\ & \text { L4 } \end{aligned}$
		[25]	

TOTAL: 150

