

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICAL LITERACY P2

..................

FEBRUARY/MARCH 2011

MEMORANDUM

MARKS: 150

SYMBOL	EXPLANATION
А	Accuracy
CA	Consistent accuracy
С	Conversion
J	Justification (Reason/Opinion)
М	Method
MA	Method with accuracy
Р	Penalty for no units, incorrect rounding off, etc.
R	Rounding off
RT/RG	Reading from a table/Reading from a graph
S	Simplification
SF	Correct substitution in a formula
0	Own opinion

This memorandum consists of 22 pages.

Copyright reserved

Please turn over

	ON 1 [40 MARKS]		T
Ques	Solution	Explanation	AS
1.1.1(a)	\checkmark M A = 100% - (15,6 + 27,2 + 22,4 + 7,2 + 2,3 + 6,0 + 4,4)% = 14,8% \checkmark CA	1M subtracting from 100% 1CA value of A	12.4.4
	OR		
	Number of learners in school = $\frac{340}{27,2\%}$		
	= 1 250 ✓M	1MA number of learners at school	
	$A = \frac{185}{1250} \times 100\%$ = 14,8% \checkmark CA		
	= 14,8% ✓CA	1CA value of A (2)	
1.1.1(b)	Total number of learners = $\frac{195}{15,6\%}$		12.4.4
	= 1 250 ✓A	1A number of learners	
	$\frac{B}{1\ 250} \times 100\% = 4,4\% \checkmark M$	1M using 4,8%	
	$B = \frac{4,4\% \times 1250}{100\%}$ = 55 \sqrt{CA}		
	$= 55 \checkmark CA$	1CA value of B	
		(3)	

Ques	Solution	Explanation	AS
1.1.2	Percentage = $7,2\% + 2,4\% + 6\% + 4,4\% \checkmark M$ = $20\% \checkmark CA$	1M adding 1CA percentage	12.4.4
	OR		
	Percentage = $\frac{90+30+75+55}{1\ 250} \times 100\%$ \checkmark M	1M finding percentage	
	$=\frac{250}{1\ 250}\times 100\%$		
	=20% VCA	1CA percentage	
			(2)

4 NSC – Memorandum

Ques	Solution	Explanation	AS
1.2.1(a)	Average speed = $\frac{\text{distance}}{\text{time}} \checkmark M$	1M rearranging the formula	12.2.1
	$= \frac{12 \mathrm{km}}{60 \mathrm{min}} \checkmark \mathrm{SF}$	1SF substitution	
	$=\frac{12\ 000\ \mathrm{m}}{60\ \mathrm{min}}\checkmark\mathrm{C}$	1C conversion	
	= 200 metres per minute \checkmark CA	1CA solution	
	OR Distance = average speed × time	OR	
	12 km = average speed \times 60 minutes \checkmark SF	1SF substitution	
	12 000 m = average speed \times 60 minutes \checkmark C	1C conversion	
	$\frac{12\ 000\ \text{m}}{60\ \text{min}} = \text{average speed} \qquad \checkmark \text{M}$	1M rearranging the formula	
	Average speed = 200 metres per minute \checkmark CA	1CA solution (4)	
1.2.1(b)	200 m/minute is too fast for walking and too slow for travelling by car or by taxi. $\checkmark O$ Thus, the learner was cycling/running/travelling in a donkey cart. $\checkmark \checkmark J$		12.1.2
	OR ✓ ✓ J		
	Any other sensible reason	(3)	
1.2.2	The statement of the newspaper was NOT correct. $\checkmark O$ $\checkmark J$	10 conclusion of the newspaper	12.4.6
	The sample chosen was too small (not representative of the whole country) so cannot be used to make conclusions about the whole country. $\checkmark J$	2J representivity of the sample (3)	

Ques	Solution	Explanation	AS
1.3	Area needed for 1 bicycle = $(1.8 \text{ m} \times 0.45 \text{ m}) + 0.5 \text{ m}^2$ MA $\checkmark CA$ = 0.81 m ² + 0.5 m ²	1C conversion to m 1MA area for a bicycle 1CA additional space	12.3.1 12.3.1
	$= 1,31 \text{ m}^2 \checkmark \text{CA}$	1A total area for a bicycle	
	So, area needed for 124 bicycles = $124 \times 1,31 \text{ m}^2 \checkmark A$ $\checkmark CA$ = $162,44 \text{ m}^2 \checkmark CA$ OR	1A multiplication by 124 1CA Solution 1CA correct unit	
	Area needed for 1 bicycle $\checkmark MA \qquad \checkmark C \qquad \checkmark A$ $= (180 \text{ cm} \times 45 \text{ cm}) + 0.5 \times 10\ 000 \text{ cm}^2$ $= 8\ 100\ \text{cm}^2 + 5\ 000\ \text{m}^2$	1C conversion to cm ² 1MA area for a bicycle 1A additional space 1CA total area for a bicycle	
	= 13 100 cm ² \checkmark CA So, area needed for 124 bicycles = 124 × 13 100 cm ² = 1 624 400 cm ² \checkmark CA = 162,44 m ² \checkmark A	1CA multiplication by 124 1CA Solution	
		1A correct unit (7)	

Ques	Solution	Explanation	AS
1.4.1	Mean $= \frac{2+4+6+3+4+5+6+5+7+5+16+9+5+C+17+9}{16}$ $= \frac{103+C}{16} \checkmark S$	1MA finding the mean 1S simplification	12.4.3 12.4.4
	Mean = 7 $\therefore \frac{103 + C}{16} = 7 \checkmark M$ $103 + C = 7 \times 16$ C = 112 - 103	1M equating to 6	
	$= 9 \checkmark CA$	1CA value of C (4)	
1.4.2	Responses in ascending order are: 2; 3; 4; 4; 5; 5; 5; 5; 6; 6; 7; 9; 9; 9; 16; 17	1CA ascending order	12.4.3
	The median = $\frac{5+6}{2} \checkmark M$ = 5,5 people $\checkmark CA$	1M finding the median 1CA median (3)	
1.4.3	Mrs James should use the median rather than the mean \checkmark O	10 correct measure	12.4.3
	The mean (i.e. 7 people) is not a good measure to use as 10 of the 16 households have less than 7 people. The mean is affected by large numbers. $\checkmark J$	1J rejecting the mean	
	More than 50% of the households have 5 people or less thus making the median (i.e. 5,5 people) a more accurate measure.	1J accepting the median (3)	

Ques	Solution	Explanation	AS
2.1.1(a)	$P = \frac{4}{2} \checkmark M$	1 M method	12.2.1
	= 2 ✓CA	1CA value of P	
		(2)	
2.1.1(b)	$1 = \frac{5}{Q} \checkmark M$	1 M method	12.2.1
	$1 = \frac{5}{Q} \checkmark M$ $Q = \frac{5}{1}$ $= 5 \checkmark CA$	1CA value of Q	
	OR		
	$0,8 = \frac{4}{Q} \checkmark M$	1 M method	
	$0,8 = \frac{4}{Q} \checkmark M$ $Q = \frac{4}{0,8}$ $= 5 \checkmark CA$	1CA value of Q	
		(2)	

Ques	Solution	Explanation	AS
2.2.1	Jabu's wages = R11,25/hour × 40 hours $\checkmark M$ = R450,00 $\checkmark CA$ $\checkmark M$ $\checkmark CA$ Each worker earns 80% of R450,00 = R360,00 Total paid = R450,00 + 3 × R360 $\checkmark M$ = R1 530.00 $\checkmark CA$	1M calculating Jabu's wages 1CA Jabu's wages 1M calculating worker's wages 1CA worker's wages 1M adding all wages	12.1.3 12.2.1
	$= R1 530,00 \checkmark CA$ OR Jabu's wages = R11,25/hour × 40 hours $\checkmark M$ $= R450,00 \checkmark CA$ Each worker earns 80% of R11,25 = R9,00 $\checkmark CA$ Total paid = R450,00 + 3 × R9,00/hour × 40 hours $\checkmark M$ $= R1 530,00 \checkmark CA$	1CA total wages 1M calculating Jabu's wages 1CA Jabu's wages 1M calculating worker's wages 1A worker's hourly wage 1M adding all wages	
2.2.2	Overtime pay per hour = $1.5 \times R11, 25 \checkmark M$	1CA total wages (6) 1M calculating overtime rate	12.1.3
	= R16,875 \approx R16,88 \checkmark CA Jabu's earning = R450,00 + R16,88/hour × 8 hours \checkmark M = R450,00 + R135,04 \checkmark CA = R585,04 \checkmark CA	1CA overtime rate 1M calculating Jabu's wages 1CA overtime pay 1CA total earnings	
	OR $\checkmark A$ $\checkmark A$ Jabu's earning = R450,00 + 8 × (1,5 × R11,25) $\checkmark M$ = R450,00 + R135,00 $\checkmark CA$ = R585,00 $\checkmark CA$	1A number of hours overtime 1A multiplying by overtime rate 1M calculating Jabu's wages 1CA overtime pay 1CA total earnings (5)	

Ques	Solution	Explanation	AS
2.3.1(a)	Percentage = $25\% \checkmark \checkmark A$	2A percentage	12.4.3
	OR		
	Percentage = $\frac{3}{12} \times 100\%$ $\checkmark A$ = 25% $\checkmark CA$	1A number of days 1CA percentage	
	$= 25\% \checkmark CA$	(2))
2.3.1(b)	Percentage = $50\% \checkmark \checkmark A$	2A percentage	12.4.3
	OR		
	Percentage = $\frac{6}{12} \times 100\%$ \checkmark A = 50% \checkmark CA	1A number of days	
		1CA percentage (2)
2.3.2(a)	$P(3 \text{ Type B}) = \frac{2 \checkmark A}{12} \checkmark A$	1A number of days 1A total number of days	12.4.5
	$= \frac{1}{6} \\= 0,1666 \\\approx 0,167$		
	~ 0,107	(2))
2.3.2(b)	P(more than 4 Type A) = $\frac{6}{12} \checkmark A$	1A number of days 1A total number of	12.4.5
	$=\frac{1}{2}$ $= 0,25$	days (2)

QUES	QUESTION 3 [25 MARKS]			
Ques	Solution	Explanation	AS	
3.1.1	Distance around the pencil = $6 \times 3 \text{ mm}$ $\checkmark M$	1M multiplying by 6	12.3.1	
	$= 18 \text{ mm} \checkmark \text{A}$	1A distance		
	Length of pencil covered by beads = $\frac{1}{3} \times 180 \text{ mm} \checkmark C$	1C conversion		
	= 60 mm ✓ A	1A length		
	Surface area of pencil covered by beads			
	= $18 \text{ mm} \times 60 \text{ mm} \checkmark \text{MA}$	1MA use of area formula		
	$= 1.080 \text{ mm}^2 \checkmark \text{CA}$	1CA area of beaded section		
	OR			
	Area of one of the beaded sides of the pencil = $3 \text{ mm} \times (\frac{1}{3} \times 180 \text{ mm}) \checkmark \text{MA} \checkmark C$ $\checkmark CA$ = $3 \text{ mm} \times 60 \text{ mm}$	1MA use of area formula 1C conversion 1CA width		
	$= 180 \text{ mm}^2 \checkmark CA$	1CA area of one beaded side		
	$\therefore \text{ Surface area of the pencil covered by beads} = 6 \times 180 \text{ mm}^2 \checkmark \text{CA}$	1CA multiplying by 6		
	$= 1080 \text{ mm}^2 \checkmark \text{CA}$	1CA area of beaded section (6)		

Ques	Solution	Explanation	AS
3.1.2	Distance around the pencil = $18 \text{ mm} \checkmark M$ \therefore The number of beads = $18 \text{ mm} \div 1,5 \text{ mm}$ = $12 \checkmark CA$	1M dividing 1CA number of beads	12.3.1 12.1.1
	Length of beaded area = 60 mm The number of beads = $60 \text{ mm} \div 1,5 \text{ mm}$ = $40 \checkmark \text{CA}$ So the number of beads needed = $12 \times 40 \checkmark \text{M}$	1M dividing 1CA number of beads 1M multiplying	
	= 480 ✓ CA OR	1CA solution	
	Width of one side of pencil = 3 mm Number of beads needed for width = 3 mm \div 1,5 mm = 2 Length of pencil to be beaded = 60 mm Number of beads needed for length = 60 mm \div 1,5 mm = 40 Number of beads needed for one side of pencil = 2 × 40 = 80 beads	1M dividing 1A number on width 1M dividing 1A number on length 1CA number on side	
	Number of beads needed for six sides of pencil = 6×80 = $480 \checkmark CA$	1CA number on six sides (6)	

Ques	Solution	Explanation	AS
3.2.1	$\checkmark MA$ Cost of labour (for beading) = $\frac{5}{60} \times R15,50$ = R1,29 $\checkmark CA$ Cost of beads = $\frac{480}{1000} \times R8,00 \checkmark MA$ = R3,84 $\checkmark CA$	1MA fraction and multiplication 1CA cost of labour 1MA fraction and multiplication 1CA cost of beads	12.1.1
	Cost of pencil = $\frac{R30,00}{12}$ \checkmark MA = R2,50 \checkmark CA Total cost price of the beaded pencil	1MA dividing by 12 1CA cost of one pencil	
	= R1,29+R3,84+R2,50 = R7,63 \checkmark CA % Selling price = 100% + 35% = 135%	1CA total cost of a pencil	
	Selling price $= \frac{135}{100} \times R7,63$ $= 1,35 \times R7,63$ $= R10,30 \checkmark CA$	1M calculating increase % 1CA cost of pencil (9)	

Ques	Solution	Explanation	AS
3.2.2	Price of pencil = $R10,30$		12.1.1
	$R1 = ARS \ 0.54895$ R10.30 = ARS 0.54895 × 10.30 $\checkmark A$	1A using the	
	= ARS 5,654185	exchange rate	
	Price of one pencil = ARS 5,654185 \checkmark CA	1CA price of pencil	
	Number of pencils = $\frac{\text{ARS 100}}{\text{ARS 5,654185}}$ \checkmark M	in Argentinean peso 1M finding number of pencils	
	= 17,686	or penens	
	≈ 17 ✓CA	1CA number of	
		pencils	
		(4	4)

Ques	Solution		Explanation	AS
4.1.1	METHOD 1 Discount = 5% of R139 900 M = $\frac{5}{100} \times R139 900$ = 0,05 × R139 900 = R6 995,00 ✓A Price after discount = R139 900 - R6 995,00	METHOD 2 Price after discount $\checkmark M$ = 95% of R139 900 $= \frac{95}{100} \times R139 900$ $= 0.95 \times R139 900$ $= R132 905 \checkmark CA$	1M calculating % 1A calculating 5% 1CA cash price (ex VAT) OR 1M subtracting from 100% 1M calculating percentage	12.1.3
	$= R132\ 905 \checkmark CA$ VAT $= 14\% \text{ of } R132\ 905$ $= \frac{14}{100} \times R132\ 905$ $= R18\ 606,70 \checkmark CA$ Total cost including VAT $= R132\ 905 + R18\ 606,70$ $= R151\ 511,70 \checkmark CA$	Total cost including VAT = 114% of R132 905 \checkmark M = $\frac{114}{100} \times$ R132 905 = 1,14 × R132 905 = R151 511,70 \checkmark CA	1CA discounted price 1M adding 14% 1CA price including VAT OR 1CA calculating VAT 1CA cash price (incl. VAT)	
	$= \frac{0.73}{100}$ $= 0.00$ $= R 1$ Full purchase cash price	5% of R151 511,70 $\frac{5}{6}$ × R151 511,70 $\frac{75}{75}$ × R151 511,70 $\frac{75}{136,34}$ \sqrt{CA} 34 + R1 400,00 + R4 950,00	1M calculating % 1CA delivery cost 1CA purchase price (8	

Ques	Solution		Explanation	AS
4.1.2	Deposit = 20% of R158 998, = R31 799,61 \checkmark CA		1CA deposit amount	12.1.3
	Amount to be financed = R1: = R1: OR % to be financed = $100\% - 2$	27 198,43 ✓CA	1M subtracting 1CA amount financed	
	$= 80\% \checkmark CA$ Amount to be financed $=\frac{80}{100} \times R158\ 998,04 \checkmark M$		1CA correct % 1M calculating %	
	= 0,8 $= R1$	1CA amount financed		
	$A = P(1 + i \times n) \qquad \checkmark SF \qquad \checkmark A \\ = R127 \ 198,43 \ (1 + 0,12 \times 5) \\ = R203 \ 517,49 \ \checkmark CA$		1SF substituting P 1A value of <i>i</i> 1CA amount to be repaid	
	METHOD 1Monthly instalment $= \frac{R203 517,49}{60} \checkmark M$ $= R3 391,95816$ $\approx R3 391,96 \checkmark CA$ The monthly instalment is over by R7,04 $\checkmark J$	METHOD 2 R3 399,00 \times 60 \checkmark M = R203 940,00 \checkmark CA The monthly instalment is over by R422,51 over the 60 months. \checkmark J	 1M multiplying by 60 OR 1M dividing by 60 1CA monthly instalment OR 1CA total paid 1J conclusion 	
			(9)	

Ques	Solution	Explanation	AS
4.2	Area to be paved = 2,99 m× 10,35 m \checkmark MA = 30,9465 m ² \checkmark CA	1MA using area formula 1CA paving area	12.3.1
	✓MA Area of the top face of a brick = 23 cm × 11,5 cm = 264,5 cm ² ✓A = 0,02645 m ² ✓C	1MA using area formula 1A area of each brick 1C converting	
	Number of bricks = $\frac{30,9465 \text{ m}^2}{0,02645 \text{ m}^2} \checkmark \text{M}$ = 1 170 bricks $\checkmark \text{CA}$	1M dividing 1CA number of bricks	
	Number of pallets $=\frac{1170}{354}$ \checkmark M	1M dividing by 160	
	= 3,305 So, 4 pallets will be needed \checkmark CA	1CA number of pallets	
	OR		

4.3.2	Delivery charge by ABC Transport		12.2.1
	= R95 + R5,45 × (35 km − 10 km) \checkmark SF = R95 + R5,45 × 25 km	1SF substitution	
	$=$ R 231,25 \checkmark A	1A delivery charge	
	Friend's charge = R250,00		
	✓CA	1CA choice	
	Ravi should use ABC transport because he would save $\sqrt[4]{4}$	2J justification (5)	
	R18,75	(5)	

Questi	Question 5 [18 MARKS]			
Ques	Solution	Explanation	AS	
5.1.1	Capacity = 2,5 m \times 2,5 m \times 2 m \checkmark SF	1SF substitution	12.3.1	
	$= 12,5 \text{ m}^3 \checkmark \text{CA}$	1CA computation	12.3.2	
	$= 12,5 \text{ k} \ell \checkmark C$	1C converting to $k \ell$		
		(3)		
5.1.2	65% of capacity = 0,65 of 12,5 k ℓ		12.1.1	
	= 8,125 k ℓ ✓A	1A 65% of tank	12.2.1	
			12.3.2	
	Full output = 3,6 k ℓ /hour			
	$\frac{2}{3}$ of output = $\frac{2}{3} \times 3,6 \mathrm{k}\ell$ /hour $\checkmark \mathrm{M}$	1M multiplication		
	= 2,4 k ℓ /hour \checkmark CA	1CA operating output rate		
	Time taken to fill 65% = $\frac{8,125 \text{k}\ell}{2,4 \text{k}\ell/\text{hour}} \checkmark M$	1M finding time		
	= 3,385 hours ✓CA	1CA time in hours		
	$= 3 \text{ hours} + 0,385 \times 60 \text{ min}$			
	= 3 hours + 23,125 minutes			
	$= 3 h 24 min$ $\checkmark CA$	1CA time in minutes and		
		hours		
		(6)		
5.2.1	Daily water consumption		12.2.1	
			12.3.1	
	$= 40 \times 90 \ell + 20 \times 50 \ell + 30 \times 50 \ell + 50 \times 5 \ell$	2M substitution	12.3.2	
	$= 6350 \ell$ \checkmark CA	1CA simplification		
	$= 6,350 \mathrm{k\ell} \sqrt{\mathrm{C}}$	1C conversion		
		(4)		

Ques	Solution	Explanation	AS
5.2.2	Water needed for ten days = $6,35 \text{ k}\ell \times 10$ $\checkmark M$	1M multiplication	12.1.1
	$= 63,5 \mathrm{k\ell}$		12.2.1
	$= 63.5 \text{ m}^3 \checkmark \text{C}$	1C conversion	12.3.2
	$3,14 \times (radius)^2 \times 2 m = 63,5 m^3 \checkmark SF$	1SF substitution	
	$(radius)^2 = \frac{63.5 \mathrm{m}^3}{3.14 \times 2 \mathrm{m}}$		
	$(radius)^2 = 10,111m^2 \checkmark CA$	1CA simplification	
	radius = $\sqrt{10,111m^2}$		
	radius = 3,17985m	1CA solution	
	radius = $3,18 \text{ m}$ \checkmark CA		(5)

TOTAL: 150