basic education

Department:
Basic Education REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICAL LITERACY P2

FEBRUARY/MARCH 2011
MEMORANDUM

MARKS: 150

SYMBOL	EXPLANATION
A	Accuracy
CA	Consistent accuracy
C	Conversion
J	Justification (Reason/Opinion)
M	Method
MA	Method with accuracy
P	Penalty for no units, incorrect rounding off, etc.
R	Rounding off
RT/RG	Reading from a table/Reading from a graph
S	Simplification
SF	Correct substitution in a formula
O	Own opinion

This memorandum consists of 22 pages.

QUESTION 1 [40 MARKS]			
Ques	Solution	Explanation	AS
1.1.1(a)	$\begin{aligned} & \checkmark \mathrm{M} \\ & \mathrm{~A}=100 \%-(15,6+27,2+22,4+7,2+2,3+6,0+4,4) \% \\ &=14,8 \% \vee \mathrm{CA} \end{aligned}$ OR $\begin{aligned} \text { Number of learners in school } & =\frac{340}{27,2 \%} \\ & =1250 \quad \checkmark \mathrm{M} \end{aligned}$ $\begin{aligned} \mathrm{A} & =\frac{185}{1250} \times 100 \% \\ & =14,8 \% \quad \checkmark \mathrm{CA} \end{aligned}$	1 M subtracting from 100\% 1 CA value of A 1MA number of learners at school 1CA value of A	12.4.4
1.1.1(b)	$\begin{aligned} & \text { Total number of learners }=\frac{195}{15,6 \%} \\ & =1250 \quad \checkmark \mathrm{~A} \\ & \frac{\mathrm{~B}}{1250} \times 100 \%=4,4 \% \quad \checkmark \mathrm{M} \\ & \mathrm{~B}=\frac{4,4 \% \times 1250}{100 \%} \\ & =55 \quad \checkmark \mathrm{CA} \end{aligned}$	1A number of learners 1 M using 4,8\% 1 CA value of B	$\begin{aligned} & 12.4 .4 \\ & 12.1 .1 \end{aligned}$

Ques	Solution								
1.1.3	TABLE 1: Time usually taken by all the learners of Vuka High School to travel to school each day								
	Time taken in minutes								
	Number of learners	195	340	185	280	90	30	75	B

RELATIONSHIP BETWEEN NUMBER OF LEARNERS AND TIME TAKEN TO TRAVEL TO SCHOOL

4A marks for any four bars correct
1 A all bars correct
1CA histogram (bars adjacent to each other - no space between bars)

Ques	Solution	Explanation	AS
1.2.1(a)	$\begin{aligned} & \text { Average speed }=\frac{\text { distance }}{\text { time }} \checkmark \mathrm{M} \\ & \\ & =\frac{12 \mathrm{~km}}{60 \mathrm{~min}} \quad \checkmark \mathrm{SF} \\ & \\ & =\frac{12000 \mathrm{~m}}{60 \mathrm{~min}} \quad \checkmark \mathrm{C} \\ & \\ & =200 \text { metres per minute } \checkmark \mathrm{CA} \end{aligned} \quad \begin{aligned} \text { OR } \end{aligned} \quad \begin{aligned} 12 \mathrm{~km} & =\text { average speed } \times 60 \text { minutes } \quad \checkmark \mathrm{SF} \\ 12000 \mathrm{~m} & =\text { average speed } \times 60 \text { minutes } \quad \checkmark \mathrm{C} \\ \frac{12000 \mathrm{~m}}{60 \mathrm{~min}} & =\text { average speed } \quad \checkmark \mathrm{M} \\ \text { Average speed } & =200 \text { metres per minute } \checkmark \mathrm{CA} \end{aligned}$	1 M rearranging the formula 1SF substitution 1C conversion 1CA solution OR 1SF substitution 1C conversion 1 M rearranging the formula 1CA solution	12.2.1
1.2.1(b)	$200 \mathrm{~m} / \mathrm{minute}$ is too fast for walking and too slow for travelling by car or by taxi. $\quad \checkmark \mathrm{O}$ Thus, the learner was cycling/running/travelling in a donkey cart. $\checkmark \checkmark \mathrm{J}$ OR $\checkmark \checkmark \mathrm{J}$ Any other sensible reason	10 Own opinion 2J justification/reason (3)	12.1.2
1.2.2	The statement of the newspaper was NOT correct. $\checkmark \mathrm{O}$ $\checkmark \mathrm{J}$ The sample chosen was too small (not representative of the whole country) so cannot be used to make conclusions about the whole country. $\checkmark \mathrm{J}$	10 conclusion of the newspaper 2J representivity of the sample	12.4.6

Ques	Solution	Explanation	AS
1.3	Area needed for 1 bicycle $=(1,8 \mathrm{~m} \times 0,45 \mathrm{~m})+0,5 \mathrm{~m}^{\checkmark} \times \mathrm{MA}$ $\begin{aligned} & \checkmark \mathrm{CA} \\ = & 0,81 \mathrm{~m}^{2}+0,5 \mathrm{~m}^{2} \\ = & 1,31 \mathrm{~m}^{2} \checkmark \mathrm{CA} \end{aligned}$ So, area needed for 124 bicycles $=124 \times 1,31 \mathrm{~m}^{2} \quad \checkmark \mathrm{~A}$ $\begin{aligned} & \checkmark \mathrm{CA} \\ = & 162,44 \mathrm{~m}^{2} \quad \checkmark \mathrm{CA} \end{aligned}$ OR Area needed for 1 bicycle $\begin{aligned} & \checkmark \mathrm{MA} \quad \stackrel{\checkmark \mathrm{C}}{\mathrm{MA}} \times \mathrm{C}^{\vee} \\ = & (180 \mathrm{~cm} \times 45 \mathrm{~cm})+0,5 \times 10000 \mathrm{~cm}^{2} \\ = & 8100 \mathrm{~cm}^{2}+5000 \mathrm{~m}^{2} \\ = & 13100 \mathrm{~cm}^{2} \quad \checkmark \mathrm{CA} \end{aligned}$ \checkmark CA So, area needed for 124 bicycles $=124 \times 13100 \mathrm{~cm}^{2}$ $\begin{aligned} & =1624400 \mathrm{~cm}^{2^{\imath} \mathrm{CA}} \\ & =162,44 \mathrm{~m}^{2} \checkmark \mathrm{~A} \end{aligned}$	1C conversion to m 1MA area for a bicycle 1CA additional space 1A total area for a bicycle 1A multiplication by 124 1CA Solution 1CA correct unit 1 C conversion to cm^{2} 1MA area for a bicycle 1A additional space 1CA total area for a bicycle 1CA multiplication by 124 1CA Solution 1A correct unit	$\begin{aligned} & 12.3 .1 \\ & 12.3 .1 \end{aligned}$

Ques	Solution	Explanation	AS
1.4.1	Mean $\begin{aligned} & =\frac{2+4+6+3+4+5+6+5+7+5+16+9+5+\mathrm{C}+17+9}{16} \\ & =\frac{103+\mathrm{C}}{16} \quad \checkmark \mathrm{~S} \end{aligned}$ $\begin{aligned} & \text { Mean }=7 \\ & \therefore \frac{103+\mathrm{C}}{16}=7 \checkmark \mathrm{M} \\ & 103+\mathrm{C}=7 \times 16 \\ & \mathrm{C}=112-103 \\ & =9 \checkmark \mathrm{CA} \end{aligned}$	1MA finding the mean 1S simplification 1 M equating to 6 1CA value of C	$\begin{aligned} & 12.4 .3 \\ & 12.4 .4 \end{aligned}$
1.4.2	Responses in ascending order are: $2 ; 3 ; 4 ; 4 ; 5 ; 5 ; 5 ; 5 ; 6 ; 6 ; 7 ; 9 ; 9 ; 9 ; 16 ; 17$ $\begin{aligned} \text { The median } & =\frac{5+6}{2} \checkmark \mathrm{M} \\ & =5,5 \text { people } \checkmark \mathrm{CA} \end{aligned}$	1CA ascending order 1 M finding the median 1CA median	12.4.3
1.4.3	Mrs James should use the median rather than the mean $\checkmark \mathrm{O}$ The mean (i.e. 7 people) is not a good measure to use as 10 of the 16 households have less than 7 people. The mean is affected by large numbers. \checkmark J More than 50% of the households have 5 people or less thus making the median (i.e. 5,5 people) a more accurate measure.	10 correct measure 1 J rejecting the mean 1 J accepting the median	12.4.3

QUESTION 2 [33 MARKS]			
Ques	Solution	Explanation	AS
2.1.1(a)	$\begin{aligned} \mathrm{P} & =\frac{4}{2} & \checkmark \mathrm{M} \\ & =2 & \checkmark \mathrm{CA} \end{aligned}$	1 M method 1CA value of P	12.2.1
		(2)	
2.1.1(b)	$\begin{aligned} 1 & =\frac{5}{\mathrm{Q}} \checkmark \mathrm{M} \\ \mathrm{Q} & =\frac{5}{1} \\ & =5 \checkmark \mathrm{CA} \end{aligned}$ OR $\begin{aligned} 0,8 & =\frac{4}{\mathrm{Q}} \checkmark \mathrm{M} \\ \mathrm{Q} & =\frac{4}{0,8} \\ & =5 \checkmark \mathrm{CA} \end{aligned}$	1 M method 1 CA value of Q 1 M method 1 CA value of Q	12.2.1

Ques	Solution	Explanation	AS
2.2.1	$\begin{aligned} & \text { Jabu's wages }=\text { R11,25/hour } \times 40 \text { hours } \checkmark \mathrm{M} \\ &=\text { R450,00 } \checkmark \mathrm{CA} \\ & \checkmark \mathrm{M} \end{aligned}$ Each worker earns 80% of R450,00 $=$ R 360,00 $\begin{aligned} \text { Total paid } & =\text { R450,00 } 3 \times \mathrm{R} 360 \quad \checkmark \mathrm{M} \\ & =\mathrm{R} 1530,00 \quad \checkmark \mathrm{CA} \end{aligned}$ OR $\begin{aligned} \text { Jabu's wages } & =\text { R11,25/hour } \times 40 \text { hours } \checkmark \mathrm{M} \\ & =\text { R450,00 } \quad \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} & \qquad \mathrm{M} \\ & \text { Each worker earns } 80 \% \text { of R11,25 }=\text { R9,00 } \checkmark \mathrm{CA} \\ & \text { Total paid }=\text { R450,00 }+3 \times \mathrm{R} 9,00 / \text { hour } \times 40 \text { hours } \checkmark \mathrm{M} \\ & =\text { R1 530,00 } \checkmark \mathrm{CA} \end{aligned}$	1M calculating Jabu's wages 1CA Jabu's wages 1M calculating worker's wages 1CA worker's wages 1 M adding all wages 1CA total wages 1 M calculating Jabu's wages 1CA Jabu's wages 1 M calculating worker's wages 1A worker's hourly wage 1 M adding all wages 1CA total wages	$\begin{aligned} & 12.1 .3 \\ & 12.2 .1 \end{aligned}$
2.2.2	$\begin{aligned} \text { Overtime pay per hour } & =1,5 \times \mathrm{R} 11,25 \checkmark \mathrm{M} \\ & =\mathrm{R} 16,875 \\ & \approx \mathrm{R} 16,88 \quad \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Jabu's earning } & =\mathrm{R} 450,00+\mathrm{R} 16,88 / \text { hour } \times 8 \text { hours } \checkmark \mathrm{M} \\ & =\mathrm{R} 450,00+\mathrm{R} 135,04 \checkmark \mathrm{CA} \\ & =\mathrm{R} 585,04 \checkmark \mathrm{CA} \end{aligned}$ OR $\begin{aligned} \text { Jabu's earning } & =\mathrm{R} 450,00+8 \times(1,5 \times \mathrm{R} 11,25) \quad \checkmark \mathrm{M} \\ & =\mathrm{R} 450,00+\mathrm{R} 135,00 \quad \checkmark \mathrm{CA} \\ & =\mathrm{R} 585,00 \checkmark \mathrm{CA} \end{aligned}$	1 M calculating overtime rate 1CA overtime rate 1M calculating Jabu's wages 1CA overtime pay 1CA total earnings 1A number of hours overtime 1A multiplying by overtime rate 1 M calculating Jabu's wages 1CA overtime pay 1CA total earnings	12.1.3

Ques	Solution	Explanation	AS
2.3.1(a)	$\text { Percentage }=25 \% \checkmark \checkmark \mathrm{~A}$ OR $\begin{aligned} \text { Percentage } & =\frac{3}{12} \times 100 \% \quad \checkmark \mathrm{~A} \\ & =25 \% \quad \checkmark \mathrm{CA} \end{aligned}$	2A percentage 1A number of days 1CA percentage	12.4.3
2.3.1(b)	$\text { Percentage }=50 \% \checkmark \checkmark \mathrm{~A}$ OR $\begin{aligned} \text { Percentage } & =\frac{6}{12} \times 100 \% \quad \checkmark \mathrm{~A} \\ & =50 \% \checkmark \mathrm{CA} \end{aligned}$	2A percentage 1A number of days 1CA percentage	12.4.3
2.3.2(a)	$\left.\begin{array}{rl} \mathrm{P}(3 \text { Type } \mathrm{B}) & =\frac{2}{12} \checkmark \mathrm{~A} \\ & =\frac{1}{6} \\ & =0,1666 \ldots \\ & \approx 0,167 \end{array}\right\}$	1A number of days 1 A total number of days	12.4.5
2.3.2(b)	$\left.\begin{array}{rl} \mathrm{P}(\text { more than } 4 \text { Type } \mathrm{A}) & =\frac{6^{\checkmark}}{12} \checkmark \mathrm{~A} \\ & =\frac{1}{2} \\ & =0,25 \end{array}\right\}$	1A number of days 1A total number of days	12.4.5

QUESTION 3 [25 MARKS]			
Ques	Solution	Explanation	AS
3.1.1	$\begin{aligned} \text { Distance around the pencil } & =6 \times 3 \mathrm{~mm} \quad \checkmark \mathrm{M} \\ & =18 \mathrm{~mm} \quad \checkmark \mathrm{~A} \end{aligned} \quad \begin{aligned} \text { Length of pencil covered by beads } & =\frac{1}{3} \times 180 \mathrm{~mm} \checkmark \mathrm{C} \\ & =60 \mathrm{~mm} \checkmark \mathrm{~A} \end{aligned}$ Surface area of pencil covered by beads $\begin{aligned} & =18 \mathrm{~mm} \times 60 \mathrm{~mm} \checkmark \mathrm{MA} \\ & =1080 \mathrm{~mm}^{2} \quad \checkmark \mathrm{CA} \end{aligned}$ OR Area of one of the beaded sides of the pencil $\begin{aligned} & =3 \mathrm{~mm} \times\left(\frac{1}{3} \times 180 \mathrm{~mm}\right) \checkmark \mathrm{MA} \quad \checkmark \mathrm{C} \\ & \checkmark \mathrm{CA} \\ & =3 \mathrm{~mm} \times 60 \mathrm{~mm} \\ & =180 \mathrm{~mm}^{2} \checkmark \mathrm{CA} \end{aligned}$ \therefore Surface area of the pencil covered by beads $\begin{aligned} & =6 \times 180 \mathrm{~mm}^{2} \checkmark \mathrm{CA} \\ & =1080 \mathrm{~mm}^{2} \checkmark \mathrm{CA} \end{aligned}$	1 M multiplying by 6 1 A distance	12.3.1
		1C conversion 1A length	
		1MA use of area formula 1CA area of beaded section	
		1MA use of area formula 1C conversion 1CA width	
		1CA area of one beaded side	
		1CA multiplying by 6	
		1CA area of beaded section (6)	

Ques	Solution	Explanation	AS
3.1.2	$\begin{aligned} \text { Distance around the pencil } & =18 \mathrm{~mm} \checkmark \mathrm{M} \\ \therefore \text { The number of beads } & =18 \mathrm{~mm} \div 1,5 \mathrm{~mm} \\ & =12^{\checkmark} \mathrm{CA} \end{aligned}$ Length of beaded area $=60 \mathrm{~mm}$ The number of beads $=60 \mathrm{~mm} \div 1,5 \mathrm{~mm}$ $=40 \checkmark \mathrm{CA}$ So the number of beads needed $=12 \times 40 \checkmark \mathrm{M}$ $=480^{\checkmark} \mathrm{CA}$ OR Width of one side of pencil $=3 \mathrm{~mm}$ Number of beads needed for width $=3 \mathrm{~mm} \div 1,5 \mathrm{~mm}=2$ Length of pencil to be beaded $=60 \mathrm{~mm}$ Number of beads needed for length $=60 \mathrm{~mm} \div 1,5 \mathrm{~mm}=40$ Number of beads needed for one side of pencil $=2 \times 40$ $=80 \text { beads }$ Number of beads needed for six sides of pencil $=6 \times 80$ $=480^{\checkmark \mathrm{CA}}$	1M dividing 1CA number of beads 1 M dividing 1CA number of beads 1 M multiplying 1CA solution 1 M dividing 1A number on width 1 M dividing 1A number on length 1CA number on side 1CA number on six sides	$\begin{aligned} & 12.3 .1 \\ & 12.1 .1 \end{aligned}$

Ques	Solution	Explanation	AS
3.2.1	$\begin{aligned} \text { Cost of labour (for beading) } & =\frac{5}{60} \times \mathrm{R} 15,50 \\ & =\mathrm{R} 1,29 \quad \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Cost of beads } & =\frac{480}{1000} \times \mathrm{R} 8,00 \quad \checkmark \mathrm{MA} \\ & =\mathrm{R} 3,84 \quad \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Cost of pencil } & =\frac{\mathrm{R} 30,00}{12} & \checkmark \mathrm{MA} \\ & =\mathrm{R} 2,50 & \checkmark \mathrm{CA} \end{aligned}$ Total cost price of the beaded pencil $\begin{aligned} & =\mathrm{R} 1,29+\mathrm{R} 3,84+\mathrm{R} 2,50 \\ & =\mathrm{R} 7,63 \quad \checkmark \mathrm{CA} \end{aligned}$ $\%$ Selling price $=100 \%+35 \%=135 \%$ $\begin{aligned} \text { Selling price } & =\frac{135}{100} \times \mathrm{R} 7,63 \\ & =1,35 \times \mathrm{R} 7,63 \\ & =\mathrm{R} 10,30 \quad \checkmark \mathrm{CA} \end{aligned}$	1MA fraction and multiplication 1CA cost of labour 1MA fraction and multiplication 1CA cost of beads 1MA dividing by 12 1CA cost of one pencil 1CA total cost of a pencil 1M calculating increase \% 1CA cost of pencil	12.1.1

Ques	Solution	Explanation	AS
3.2 .2	Price of pencil $=$ R10,30 $\begin{aligned} & \text { R1 = ARS } 0,54895 \\ & \begin{aligned} \text { R10,30 } & =\text { ARS } 0,54895 \times 10,30 \quad \checkmark \text { A } \\ & =\text { ARS } 5,654185 \end{aligned} \end{aligned}$ $\text { Price of one pencil }=\text { ARS 5,654185 } \checkmark \mathrm{CA}$ $\begin{aligned} \text { Number of pencils } & =\frac{\operatorname{ARS~} 100}{\operatorname{ARS} 5,654185} \quad \checkmark \mathrm{M} \\ & =17,686 \\ & \approx 17 \quad \checkmark \mathrm{CA} \end{aligned}$	1 A using the exchange rate 1CA price of pencil in Argentinean peso 1 M finding number of pencils 1CA number of pencils	12.1.1

Ques	Solution	Explanation	AS
4.2	$\begin{aligned} & \text { Area to be paved }=2,99 \mathrm{~m} \times 10,35 \mathrm{~m} \\ & =30,9465 \mathrm{~m}^{2} \quad \checkmark \mathrm{CA} \end{aligned} \quad \begin{aligned} & \checkmark \mathrm{MA} \\ \text { Area of the top face of a brick } & =23 \mathrm{~cm} \times 11,5 \mathrm{~cm} \\ & =264,5 \mathrm{~cm}^{2} \checkmark \mathrm{~A} \\ & =0,02645 \mathrm{~m}^{2} \checkmark \mathrm{C} \end{aligned}$ $\begin{aligned} \text { Number of bricks } & =\frac{30,9465 \mathrm{~m}^{2}}{0,02645 \mathrm{~m}^{2}} \checkmark \mathrm{M} \\ & =1170 \text { bricks } \quad \checkmark \mathrm{CA} \end{aligned}$ $\begin{aligned} \text { Number of pallets } & =\frac{1170}{354} \quad \checkmark \mathrm{M} \\ & =3,305 \end{aligned}$ So, 4 pallets will be needed $\checkmark \mathrm{CA}$ OR	1MA using area formula 1CA paving area 1MA using area formula 1A area of each brick 1 C converting 1M dividing 1CA number of bricks 1 M dividing by 160 1CA number of pallets	12.3.1

	$2,99 \mathrm{~m}=299 \mathrm{~cm} \quad \checkmark \mathrm{C}$		1 C conversion	
	METHOD 1 Number bricks lengthwise $\begin{aligned} & =\frac{299 \mathrm{~cm}}{23 \mathrm{~cm}} \quad \checkmark \mathrm{M} \\ & =13 \text { bricks } \quad \checkmark \mathrm{CA} \end{aligned}$	METHOD 2 Number of bricks lengthwise $\begin{aligned} & =\frac{299 \mathrm{~cm}}{11,5 \mathrm{~cm}} \quad \checkmark \mathrm{M} \\ & =26 \text { bricks } \quad \checkmark \mathrm{CA} \end{aligned}$	1 M dividing 1CA no. of bricks	
	$10,35 \mathrm{~cm}=1035 \mathrm{~cm}$		1C conversion	
	METHOD 1 Number of bricks breadthwise $\begin{aligned} & =\frac{1035 \mathrm{~cm}}{11,5 \mathrm{~cm}} \\ & =90 \text { bricks } \checkmark \mathrm{CA} \end{aligned}$	METHOD 2 Number of bricks breadthwise $\begin{aligned} & =\frac{1035 \mathrm{~cm}}{23 \mathrm{~cm}} \\ & =45 \text { bricks } \checkmark \mathrm{CA} \end{aligned}$	1CA no of bricks	
	Total number of bricks $\begin{aligned} & =13 \times 90 \quad \checkmark \mathrm{CA} \\ & =1170 \text { bricks }^{\checkmark} \mathrm{CA} \end{aligned}$	Total number of bricks $\begin{aligned} & =26 \times 45 \\ & =1170 \text { bricks } \quad \checkmark \mathrm{CA} \end{aligned}$	1CA multiplying 1CA total no. of bricks	
	$\begin{aligned} \text { Number of pallets } & =\frac{1170}{354} \checkmark \mathrm{M} \\ & =3,305 \end{aligned}$ So, 4 pallets will be needed \checkmark CA		1 M dividing 1CA no. of pallets	
4.3.1	Delivery charge $\checkmark \mathrm{A} \quad \checkmark \mathrm{A} \quad \checkmark \mathrm{A}$ $=\mathrm{R} 95+\mathrm{R} 5,45 \times($ no of kilometres above 10 km$)$ OR Delivery $=\mathrm{R} 95+\mathrm{R} 5,45 \times($ total distance $-10 \mathrm{~km})$		1A constant amount 1 A rate per km 1A correct equation 1A constant amount 1 A rate per km 1A correct equation	12.2.1

4.3.2	Delivery charge by ABC Transport $\begin{aligned} & =\mathrm{R} 95+\mathrm{R} 5,45 \times(35 \mathrm{~km}-10 \mathrm{~km}) \quad \checkmark \mathrm{SF} \\ & =\mathrm{R} 95+\mathrm{R} 5,45 \times 25 \mathrm{~km} \\ & =\mathrm{R} 231,25 \end{aligned}$ Friend's charge $=$ R250,00 $\checkmark \mathrm{CA}$ Ravi should use ABC transport because he would save R18,75	1SF substitution 1A delivery charge 1CA choice 2J justification	12.2.1

Question 5 [18 MARKS]			
Ques	Solution	Explanation	AS
5.1.1	$\begin{aligned} \text { Capacity } & =2,5 \mathrm{~m} \times 2,5 \mathrm{~m} \times 2 \mathrm{~m} \\ & =12,5 \mathrm{~m}^{3} \quad \checkmark \mathrm{CA} \\ & =12,5 \mathrm{k} \ell \checkmark \mathrm{C} \end{aligned}$	1 SF substitution 1CA computation 1 C converting to $\mathrm{k} \ell$	$\begin{aligned} & 12.3 .1 \\ & 12.3 .2 \end{aligned}$
5.1.2	$\begin{aligned} 65 \% \text { of capacity } & =0,65 \text { of } 12,5 \mathrm{k} \ell \\ & =8,125 \mathrm{k} \ell \checkmark \mathrm{~A} \end{aligned}$ Full output $=3,6 \mathrm{k} \ell /$ hour $\begin{aligned} \frac{2}{3} \text { of output } & =\frac{2}{3} \times 3,6 \mathrm{k} \ell / \text { hour } \checkmark \mathrm{M} \\ & =2,4 \mathrm{k} \ell / \text { hour } \checkmark \mathrm{CA} \end{aligned}$ Time taken to fill $65 \%=\frac{8,125 \mathrm{k} \ell}{2,4 \mathrm{k} \ell / \text { hour }} \checkmark \mathrm{M}$ $\begin{aligned} & =3,385 \ldots \text { hours } \checkmark \mathrm{CA} \\ & =3 \text { hours }+0,385 \ldots \times 60 \mathrm{~min} \\ & =3 \text { hours }+23,125 \text { minutes } \\ & =3 \mathrm{~h} 24 \mathrm{~min} \quad \mathrm{CA} \end{aligned}$	1A 65% of tank 1M multiplication 1CA operating output rate 1M finding time 1CA time in hours 1CA time in minutes and hours	$\begin{aligned} & 12.1 .1 \\ & 12.2 .1 \\ & 12.3 .2 \end{aligned}$
5.2.1	Daily water consumption $\begin{aligned} & \quad \checkmark \mathrm{M} \quad \stackrel{\checkmark \mathrm{M}}{\mathrm{M}}=40 \times 90 \ell+20 \times 50 \ell+30 \times 50 \ell+50 \times 5 \ell \\ & =6350 \ell \quad \mathrm{CA} \\ & =6,350 \mathrm{k} \mathrm{\ell} \checkmark \mathrm{C} \end{aligned}$	2 M substitution 1CA simplification 1C conversion	$\begin{aligned} & 12.2 .1 \\ & 12.3 .1 \\ & 12.3 .2 \end{aligned}$

Ques	Solution	Explanation	AS
5.2.2		1M multiplication 1C conversion 1SF substitution 1CA simplification 1CA solution	$\begin{aligned} & 12.1 .1 \\ & 12.2 .1 \\ & 12.3 .2 \end{aligned}$

