

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICAL LITERACY P1

FEBRUARY/MARCH 2011

MEMORANDUM

MARKS: 150

SYMBOL	EXPLANATION
М	Method
MA	Method with accuracy
CA	Consistent accuracy
А	Accuracy
С	Conversion
S	Simplification
RT/RG	Reading from a table/Reading from a graph
SF	Correct substitution in a formula
0	Opinion/Example
Р	Penalty, e.g. for no units, incorrect rounding off etc.
R	Rounding off

This memorandum consists of 14 pages.

Copyright reserved

Please turn over

QUEST	TION 1 [33 MARKS]		
Ques	Explanation	Mark Allocation	AS
1.1.1	$148\% = \frac{148}{100} \checkmark M$	1M concept	12.1.1
	$=\frac{37}{25}$ OR $1\frac{12}{25}$ \checkmark A	1A simplifying (2)	
1.1.2	$1,256 \text{ cm} = 1,256 \times 10 \text{ mm}$ = 12,56 mm $\checkmark \text{A}$	1A conversion (1)	12.3.2
1.1.3	$1\frac{1}{2}(1,26+32,62) - \sqrt{2,25}$		12.1.1
	$\checkmark A = \frac{3}{2} \times 33,88 - 1,5 \checkmark A$	1A simplifying brackets 1A square root	
	= 30,82 - 1,5 = 49,32 \checkmark A	1A simplifying (3)	
1.1.4	150 minutes = $\frac{150}{60}$ hours $\checkmark M$	1M dividing	12.1.1
	$= 2\frac{1}{2}$ hours $\checkmark A$	1A simplifying (2)	
1.1.5	$\frac{R12,99}{12} \stackrel{\checkmark M}{=} R1,08 \checkmark A$	1M division by 12 1A simplifying (2)	12.1.1
1.1.6	R1 = 1,6915 MXN		12.1.3
	:. ZAR 1 220 = 1 220 × 1,6915 MXN \checkmark M	1M multiplication	
	$= 2063, 63 \text{ MXN} \checkmark \text{A}$	1A simplifying (2)	
1.1.7	Growth (in cm) = $\frac{50}{10}$ \checkmark SF = 5 \checkmark A	1SF substituting t = 10 1A simplifying (2)	12.2.1
		(2)	

Ques	Explanation	Mark Allocation	AS
1.2.1	$7-5=2$ \checkmark M \checkmark A	1M subtraction 1A simplifying	12.4.3
		(2)	
1.2.2	Modal age = 11 yrs \checkmark A	1A simplifying (1)	12.4.3
1.2.3	Mean = $\frac{1+2+3+3+4+10+11+11+11+12+15+16}{12}$	1M finding the mean	12.4.3
	$=\frac{99}{12}$ \checkmark A	1A correct values	
	$= 8,25$ years $\checkmark A$	1A simplifying (3)	
1.2.4	P(10 years old) = $\frac{1}{12} \checkmark A$	1A numerator 1A denominator (2)	12.4.5
1.3.1	Cocoa powder : sugar = 1 : 2		12.1.1
	$= 10 : 20 \checkmark A$	1A proportion	
	She would need 20 spoons of sugar \checkmark CA	1CA number of spoons (2)	
1.3.2	$\checkmark A$ Mass of milk powder = $\frac{3}{6} \times 900$ g	1A proportion1A total number of parts	12.1.1
	$= \frac{1}{2} \times 900 \text{ g}$ $= 450 \text{ g} \checkmark \text{CA}$	1CA mass of milk powder (3)	
1.4.1	Cost of the call = $R2,90 \times 5$ = $R14,50 \checkmark A$	1M multiplying peak rate 1A cost of call	12.2.3
	OR		
	Cost of the call = R14,50 $\checkmark RG$	2RG cost of call (2)	

Ques	Explanation	Mark Allocation	AS
1.4.2	Cost of the call = $R1,90 \times 5 \checkmark M$ = $R9,50 \checkmark A$	1M multiply off-peak rate 1A cost of call	12.2.3
	OR		
	Cost of a call = R9,50 $\checkmark RG$	2RG cost of call (2)	
1.4.3	Maximum time = $9 \div 2.9 \checkmark M$ = 3.1 minutes $\checkmark A$	1M dividing by rate 1A time	12.2.3
	OR		
	3 minutes $\checkmark \checkmark RG$	2RG duration of call (2)	

QUEST	FION 2 [29 MARKS]		
Ques	Explanation	Mark Allocation	AS
2.1.1	Administration coordinator Hotel coordinator ✓RT✓RT Data manager Accounts manager	2RT reading from table OR 1RT if only 2 are correct (2)	12.4.4
2.1.2	Total earnings = $4 \times R22\ 000$ = R88\ 000 $\checkmark A$	1 M finding total earnings 1A total earnings (2)	12.1.3 12.4.4
2.1.3	31 July 2010 ✓A ✓A	1A day 1A month (2)	12.3.1
2.1.4	Accounts manager : Administration coordinator $\checkmark RT$ = 25 000 : 15 000 $\checkmark A$ = 5 : 3	2 RT reading from table 1A simplified ratio (3)	12.1.1 12.4.4
2.2.1	Radius = $30 \text{ cm} \checkmark A$	1A radius (1)	12.3.1
2.2.2	Area of the mirror \checkmark SF \checkmark SF $= \frac{1}{2} \times 3,14 \times (60 \div 2)^2 + (60)^2$ \checkmark S \checkmark S $= 1.413 \text{ cm}^2 + 3.600 \text{ cm}^2$ $= 5.013 \text{ cm}^2 \checkmark$ CA	 1SF substituting diameter 1SF substituting side 1S area of semi-circle 1S area of square 1CA area of mirror (5) 	12.3.1
2.3.1	$\therefore \text{US $250 billion} = \text{US $250 \times 1000 million} = \text{US $250 000 million} \checkmark \text{A}$	1C conversion 1A answer in millions (2)	12.1.1

Ques	Explanation	Mark Allocation	AS
2.3.2	$27\% + 32\% \checkmark M$ = 59% $\checkmark A$	1M adding 1A % not from services	12.1.1
	OR	OR	
	$100\% - 41\% \checkmark M$ = 59% $\checkmark A$	1M subtracting 1A % not from services (2)	
2.3.3	Services = $100\% - 15\% - 28\% \checkmark M$ = 57% $\checkmark A$	1M subtracting 1A % from services	12.4.4 12.1.1
2.3.4	Industry = $27\% \times US$ 250 billion $\checkmark RG \checkmark M$ = US\$ 67,5 billion $\checkmark A$	1M using percentage 1RG reading from graph 1A % from industry (3)	12.4.4 12.1.1
2.3.5	% Difference = $32\% - 15\%$ = 17% $\checkmark A$	1M finding the difference 1A simplifying (2)	12.4.4 12.1.1
2.3.6	✓M Agriculture = 15% × US\$ 1 000 000 billion ✓RG $= US$ 150 000 billion ✓A$	1M using percentage 1RG reading from graph 1A amount from Agriculture (3)	12.4.4 12.1.1

QUES	QUESTION 3 [23 MARKS]			
Que	Explanation	Mark Allocation	AS	
S				
3.1.1	$A = 450 + 160 \times 0.5 \checkmark M$ = 450 + 80 = R530 $\checkmark A$	1M finding the cost 1A cost	12.2.1	
		(2)		
3.1.2	✓M B = 200 + (250 - 100) × 2 = 200 + 150 × 2.	1M subtracting	12.2.1	
	$= 200 + 300 \checkmark S \\= R500 \checkmark CA$	1S simplification 1A cost (3)		
	COST OF HIRING A CAR			
3.2	$ \begin{array}{c} 800 \\ 700 \\ 600 \\ 600 \\ 500 \\ 400 \\ 300 \\ 200 \end{array} $	 Coption X 1A point (0; 42) 1A point (400; 1A correct stratline drawn 1A label Option Y 1A point (0; 20) 1A point (100; 1A point (400; 1A p	12.2.2 50) ; 650) ight 00) ; 200) 800)	
	100	IA points joine correctly	ea	
	0 100 200 300	400		
	Distance (in kilometres)	-100		
			(9)	
3.3.1	300 km ✓RT ✓RT	2RT reading from graph table	or 12.2.1	
			(2)	
3.3.2	R600 ✓RT	1RT reading from graph table	or 12.2.3	

Ques	Explanation	Mark Allocation	AS
3.4	Time = $\frac{180 \text{ km}}{100 \text{ km/h}} \checkmark \text{SF}$ = 1,8 hrs $\checkmark \text{A}$ = 1 hr + 0,8 × 60 min = 1 hr 48 min $\checkmark \text{C}$	1SF substitution in formula 1A number of hours 1C converting to hr and	12.2.1 12.3.1
	✓M	min (3)	
3.5	Litres of petrol = $\frac{258,24}{8,07}$ \checkmark SF	1M finding number of litres 1SF correct substitution	12.1.1
	= 32 ✓A	1A simplifying (3)	

QUESTION 4 [21 MARKS]			
Ques	Explanation	Mark Allocation	AS
4.1.1	$ \begin{array}{c} \checkmark M \qquad \checkmark A \\ P = 2 m + 8 m + 1 m + 3 m + 3 m \\ \checkmark A \\ = 17 m \end{array} $	1M adding the 5 sides 1A calculating 3m 1A simplifying (3)	12.3.1
4.1.2	$\checkmark M$ $A = (11 \text{ m} \times 3 \text{ m}) - (8 \text{ m} \times 1 \text{ m}) \checkmark \text{SF}$ $= 33 \text{ m}^2 - 8 \text{ m}^2$ $= 25 \text{ m}^2 (CA + (A + A))$	1M finding area of patio 1SF substitution 1CA area of patio	12.3.1
	OR $\sqrt{M} \sqrt{SF}$ $A = (3 \text{ m} \times 3 \text{ m}) + (8 \text{ m} \times 2 \text{ m})$ $= 9 \text{ m}^{2} + 16 \text{ m}^{2}$ $= 25 \text{ m}^{2} \sqrt{CA} \sqrt{A}$	OR 1M finding area of patio 1SF substitution 1CA area of patio 1A correct unit (4)	
4.2.1 (a)	$A = \frac{60 \text{ hours}}{2} \checkmark M$ = 30 hours $\checkmark A$	1M dividing 1A number of hours (2)	12.2.3
4.2.1 (b)	$B \times 15 = 60$ $B = \frac{60}{15} \checkmark M$ = 4 workers $\checkmark A$	1M dividing 1A simplifying (2)	12.2.3
4.2.2	Indirect/Inverse proportion $\checkmark A$	1A type of proportion (1)	12.2.3
4.3.1	$V = 3.14 \times (20 \text{ cm})^2 \times 60 \text{ cm} \checkmark SF$ $= 75\ 360\ \text{cm}^3 \checkmark A \qquad \checkmark A$	1SF substitution in formula 1A volume 1A correct unit (3)	12.3.1

Ques	Explanation	Mark Allocation	AS
4.3.2	Lateral surface area of the pot		12.3.1
	$= 2 \times 3.14 \times 20 \times 80 \text{ cm}^2 \checkmark \text{SF}$	SF substitution in formula	
	$= 10.048 \text{ cm}^2 \checkmark \text{A}$	1A surface area (2)	
4.4	$\checkmark M$ Costs = $(6 \times R45,50) + (4 \times R19,99) \checkmark M$ $\checkmark S$	2M finding the costs	12.1.1
	= R273,00 + R79,96	1S simplification	
	= R352,96 ✓CA	1CA amount paid (4)	

QUES	FION 5 [25 MARKS]		
Ques	Explanation	Mark Allocation	AS
5.1.1	21 000 ✓ RT ✓ RT	2RT reading from table (2)	12.4.4
5.1.2	93 400 + 57 500 +117 100 + 21 000 $\checkmark M$ RT = 289 000 people $\checkmark A$	1 RT reading from table 1 M addition 1A simplifying (3)	12.4.4 12.1.1
5.1.3	$\begin{array}{c} \checkmark RT \qquad \checkmark RT \\ Gauteng and KwaZulu-Natal \end{array}$	2RT reading from table (2)	12.4.4
5.1.4	$\checkmark RT \checkmark M \checkmark RT$ $117 \ 100 - 56 \ 400$ $= 60 \ 700 \ \text{people} \checkmark A$	2RT reading from table 1M subtracting 1A simplifying (4)	12.4.4 12.1.1
5.2.1	$\checkmark M$ Range = R7 250 - R4 200	1M concept	12.4.3
	$= R3\ 050 \checkmark CA$	1CA simplifying (2)	
5.2.2	Median = R4 650 \checkmark A \checkmark A	1A arranging data 1A median (2)	12.4.3
5.2.3	Average(mean) = $\checkmark M$ R $\frac{5525 + 5500 + 5980 + 6250 + 6250 + 6300 + 7800 + 8200 + 8900}{10 \checkmark A}$ = $\frac{R 66955}{10}$	1 M sum 1A dividing by 10	12.4.3
		1CA mean salary (3)	
5.2.4	$\frac{3}{10} \times 100\% \checkmark M$ $= 30\% \checkmark CA$	1M salaries greater than maximum in Greytown 1M calculating % 1A simplifying (3)	12.4.4 12.1.1

Ques	Explanation	Mark Allocation	AS
5.3	$A = P(1 + i)^{n}$ $\checkmark SF \checkmark A$ $= R6 350 (1 + 0.058)^{2}$ $= R7 107 9614 \checkmark CA$	1A value of <i>i</i> 1SF substitution	12.1.1 12.2.1
	\approx R7 107,96 ✓ R	1CA amount 1R rounding off to the nearest cent (4)	

QUESTION 6 [19 MARKS]			
Ques	Explanation	Mark Allocation	AS
6.1.1	D2 or 2D \checkmark A	1A solution (1)	12.3.4
6.1.2	Maitland; Peet Avenue; Bastion; Yoxall ✓A ✓A	1A two streets correct 1A all streets correct (2)	12.3.4
6.1.3	From Luke's residence you turn right into St George's Street. At the first intersection, you turn left into President Brand Street. $\checkmark A$ Continue with the road until you reach Zastron Street. Turn right into Zastron Street. $\checkmark A$ Immediately after crossing Aliwal Street you will find the entrance on your left-hand side. $\checkmark A$ OR From Luke's residence, turn left into St George's Street. $\checkmark A$ At the intersection, turn right into Markgraaf Street. $\checkmark A$ Proceed until you reach Zastron Street. Turn right into Zastron Street. $\checkmark A$ Proceed until you cross Aliwal Street and the entrance is on the left hand side. $\checkmark A$	 1A turning into St George's Street 1A correct turn at first intersection from the residence 1A correct turn into Zastron Street 1A entry into the club OR 1A turning into St George's Street 1A turning into Markgraaf Street 1A turning into Zastron Street 	12.3.1
	Any other possible route.	(4)	
6.1.4	7 cm on map = 7 × 20 000 cm in real life = 140 000 cm \checkmark M	1M multiplication	12.3.3 12.3.1
	$= \frac{140\ 000}{100} \text{ m}$ = 1\ 400 \ m \sqrt{A}	1A converting to m	
	$=\frac{1\ 400}{1\ 000}\ \mathrm{km}$	1CA simplifying	
	$= 1.4 \text{ km} \checkmark \text{CA}$	(3)	
6.2.1	Final Score = $(3 \times 5) + (0 \times 2) + (4 + 1) \times 3$ \checkmark SF \checkmark A = $15 + 0 + 5 \times 3$ \checkmark CA = 30 \checkmark CA	1SF substitution 1A correct values used 1CA simplification 1CA simplifying (4)	12.2.1

14 NSC – Memorandum

TOTAL: 150