education

Department:
Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

NOVEMBER 2009

MEMORANDUM

MARKS: 150

SYMBOL	EXPLANATION
A	Accuracy
CA	Consistent accuracy
C	Conversion
J	Justification (Reason/Opinion)
M	Method
MA	Method with accuracy
P	Penalty, e.g. for no units, incorrect rounding off, etc.
R	Rounding off
RT/RG	Reading from a table/Reading from a graph
S	Simplification
SF	Correct substitution in a formula
O	Own opinion

This memorandum consists of 23 pages.

QUESTION 1 [29]		Penalise only once for rounding off	
Ques	Solution	Explanation	AS
1.1.1	$\checkmark \mathrm{A} \quad \checkmark \mathrm{A}$ Limpopo and Western Cape $\begin{aligned} \text { Difference } & =30,1 \%-6,7 \% \\ & =23,4 \% \quad \checkmark \mathrm{CA} \end{aligned}$	2A Solution 1CA Solution ANSWER ONLY - FULL MARKS If name 2 provinces incorrectly but do the subtraction from the computer data correctly :1 mark	$\begin{aligned} & \text { 12.4.4 } \\ & \text { 12.1.1 } \end{aligned}$
1.1.2	Did not use a computer $\begin{aligned} & =(100 \%-9,1 \%) \text { of } 911118 \checkmark \mathrm{M} \\ & =90,9 \% \text { of } 911118 \\ & =828206,262 \checkmark \mathrm{~A} \\ & \approx 828206(\text { or } 828207) \checkmark \mathrm{CA} \end{aligned}$ OR $9,1 \% \text { of } 911118=82911,738 \quad \checkmark \mathrm{~A}$ Did not use a computers $\begin{aligned} & =911118-82911,738 \quad \checkmark \mathrm{M} \\ & =828206,262 \\ & \approx 828206(\text { or } 828207) \quad \checkmark \mathrm{CA} \end{aligned}$	1M Subtraction of \% 1A Solution 1CA Rounding up or rounding down 1A Number using computers (could round off here) 1M Subtraction 1CA Rounding up or rounding down	$\begin{aligned} & \text { 12.1.1 } \\ & \text { 12.1.2 } \\ & \text { 12.4.4 } \end{aligned}$

Ques	Solution	Explanation	AS
1.1.3	$\begin{aligned} & \text { Difference in } \%=61,8 \%-13,2 \%=48,6 \% \\ & \begin{aligned} \text { Difference in usage } & =48,6 \% \text { of } 264654 \checkmark \mathrm{M} \\ & =128621,844 \\ & \approx 128622 \checkmark \mathrm{CA} \end{aligned} \end{aligned}$ OR No. of cellphone users - No. of computer users $\begin{aligned} & =61,8 \% \text { of } 264654-13,2 \% \text { of } 264654 \checkmark \mathrm{M} \\ & =163556,172-34934,328 \\ & =128621,844 \checkmark \mathrm{~A} \\ & \approx 128622 \checkmark \mathrm{CA} \end{aligned}$	1A Difference in \% 1M Calculating \% 1CA Solution 1M Calculating \% and subtraction 1A Simplification 1CA Solution	$\begin{aligned} & \text { 12.1.1 } \\ & \text { 12.1.2 } \\ & \text { 12.4.4 } \end{aligned}$
1.1.4	Total number of households surveyed $\begin{aligned} & =9 \times 1388957 \checkmark \mathrm{M} \\ & =12500613 \checkmark \mathrm{~A} \end{aligned}$ Number surveyed in Mpumalanga $\begin{aligned} & \quad \checkmark \mathrm{M} \\ &= 12500613-(1586739+802872+3175578 \\ &+2234129+1215936+911118+264654+ \\ &1369181) \\ &= 12500613-11560207 \\ &= 940406 \checkmark \mathrm{CA} \end{aligned}$ OR $\begin{aligned} & \checkmark \mathrm{M} \\ & \text { Mean }=\frac{x+11560207}{9}=1388957 \quad \checkmark \mathrm{~A} \\ & \therefore x+11560207=1388957 \times 9 \checkmark \mathrm{M} \\ & \therefore+11560207=12500775 \checkmark \mathrm{CA} \\ & \therefore x=940406 \quad \checkmark \mathrm{CA} \end{aligned}$	1M Multiplying 1A Total surveyed 1M Subtraction of households 1M Addition of given values 1CA Solution 1M Calculating mean 1A Correct substitution 1M Calculations 1CA Multiplication 1CA Solution	$\begin{aligned} & \hline 12.1 .1 \\ & \text { 12.4.4 } \end{aligned}$

Ques	Solution	Explanation	AS
1.1.5	The provinces with high cellphone usage have a corresponding relatively high computer usage. OR The provinces with a low cellphone usage have a corresponding relatively low computer usage. OR Cellphone usage is more. $\checkmark \checkmark \mathrm{O}$ Give a valid reason or calculation $\checkmark \checkmark \mathrm{O}$ OR $\checkmark \checkmark$ O No trend in NC, MPU and LIM. $\checkmark \checkmark \mathrm{O}$ Any other justification	40 Acceptable/relevant opinion OR 2 O Acceptable/relevant opinion 2 O Valid reason or calculation OR 2 O No trend 2 O Valid justification	12.4.4
1.2.1	Increase for P500 $=1520-980=540$ or $\quad \checkmark \mathrm{A}$ Increase for $\mathrm{Q} 600=1500-600=900$ \therefore Q600 has the greatest increase in sales $\checkmark \checkmark$ A	1A Range of P500 OR Range of Q600 2A Highest range	$\begin{aligned} & \hline 12.1 .1 \\ & 12.4 .4 \end{aligned}$

Ques	Solution	Explanation	AS
1.2.2	Width of screen on diagram $=18 \mathrm{~mm}$ to 20 mm Length of screen on the diagram $=36 \mathrm{~mm}$ to 38 mm Scale is $2: 5$. This means that the actual width is $\frac{5}{2}$ (or 2,5) times the given width. $\checkmark \mathrm{M}$ Actual width of screen $=\frac{\mathbf{5}}{\mathbf{2}} \times 20 \mathrm{~mm}=50 \stackrel{\checkmark \mathrm{CA}}{\mathrm{mm}}$ Actual length of screen $=\frac{\mathbf{5}}{\mathbf{2}} \times 38 \mathrm{~mm}=95 \mathrm{~mm}$ OR Scale drawing : width of screen $\begin{aligned} 2: 5 & =20: x \\ 2 x & =5 \times 20 \\ x=\frac{100}{2} & =50 \mathrm{~mm} \end{aligned}$ \therefore width of screen $=50 \mathrm{~mm} \quad \checkmark \mathrm{CA}$ Scale drawing : length of screen $\begin{align*} & 2: 5=38: y \checkmark \mathrm{~A} \\ & y=\frac{38 \times 5}{2}=95 \\ & \therefore \text { length of screen }=95 \mathrm{~mm} \quad \checkmark \mathrm{CA} \\ & \text { NB: Width with } 18 \mathrm{~mm}=45 \mathrm{~mm} \tag{5}\\ & \text { Width with } 19 \mathrm{~mm}=47,5 \mathrm{~mm} \\ & \text { Length with } 36 \mathrm{~mm}=90 \mathrm{~mm} \\ & \text { Length with } 37 \mathrm{~mm}=92,5 \mathrm{~mm} \end{align*}$	1A Width on diagram 1A Length on diagram 1M Using the given scale 1CA Actual width 1A Actual length 1M Using the given scale 1A Width on diagram 1CA Actual width 1A Length on diagram 1A Actual length ANSWERS ONLY - FULL MARKS 4 marks if correct answer given in cm	$\begin{aligned} & 12.3 .1 \\ & 12.3 .3 \end{aligned}$
1.2.3	Graph B OR Q600 $\checkmark \checkmark$ A $\quad \checkmark$ O The graph was drawn with the months reversed.	2A Identifying the graph 1O Support of statement	12.4.6

QUESTION 2 [34]		Penalise only once for rounding off	
Ques	Solution	Explanation	AS
2.1.1	Percentage using other languages$\begin{gathered} \checkmark \mathrm{A} \\ =100 \%-(64,4 \%+11,9 \%+9,1 \%) \end{gathered}$	1 A adding the given percentages	$\begin{aligned} & 12.1 .1 \\ & 12.1 .2 \\ & 12.4 .4 \end{aligned}$
	= $100 \%-85,4 \%$		
	$=14,6 \% \quad \checkmark \mathrm{CA}$	1CA Subtracting from 100\%	
	Number speaking other languages		
	$=14,6 \%$ of $2965600 \checkmark \mathrm{M}$	1M Calculating \% of population	
	$\approx 432978 \quad \checkmark \mathrm{CA}$	1CA Rounding	
	OR		
	Percentage speaking Sesotho		
	$=64,4 \%$ of $2965600=1909846,4 \quad \checkmark \mathrm{~A}$	1A calculating number	
	Percentage speaking Afrikaans		
	$=11,9 \%$ of $2965600=352906,4 \quad \checkmark \mathrm{~A}$		
	Percentage speaking isiXhosa	1A calculating number	
	$=9,1 \%$ of $2965600=269869,6 \quad \checkmark \mathrm{~A}$	1A calculating number	
	Number speaking Sesotho, Afrikaans and isiXhosa		
	$=1909846,4+352906,4+269869,6$		
	$=2532622,4$		
	Number NOT speaking Sesotho, Afrikaans and isiXhosa		
	$=2965600-2532622,4$		
	$=432977,6$		
	$\approx 432978 \quad \checkmark \mathrm{CA}$	1CA Rounding	
		ANSWER ONLY FULL MARKS	

Ques	Solution	Explanation	AS
2.1.2	$\begin{aligned} & \mathrm{P}(\text { Afrikaans and isiXhosa })=21 \% \checkmark \mathrm{~A} \\ & \mathrm{P}(\text { not Afrikaans and isiXhosa }) \\ & =100 \%-21 \% \quad \checkmark \mathrm{M} \\ & =79 \%\left(\text { or } 0,79 \text { or } \frac{79}{100} \text { or } \frac{2342824}{2969600}\right. \text {) } \end{aligned}$ OR Percentage speaking Afrikaans and isiXhosa $=11,9 \%+9,1 \%=21 \% \quad \checkmark \mathrm{~A}$ Percentage not speaking Afrikaans and isiXhosa $\begin{aligned} & =100 \%-21 \%=79 \% \quad \checkmark \mathrm{M} \\ & \mathrm{P}(\text { not Afrikaans and IsiXhosa })=79 \% \quad \checkmark \mathrm{CA} \end{aligned}$ OR Percentage speaking Afrikaans and isiXhosa $=0,21$ Percentage not speaking Afrikaans and isiXhosa $\begin{gathered} \checkmark \mathrm{M} \\ =1-0,21=0,79 \quad \checkmark \mathrm{CA} \end{gathered}$ OR Percentage not speaking Afrikaans and isiXhosa $\begin{aligned} & =\% \text { speaking other languages }+\% \text { speaking Sesotho } \\ & =14,6 \%+64,4 \% \quad \checkmark \mathrm{M} \quad \checkmark \mathrm{~A} \\ & =79 \% \quad \checkmark \mathrm{CA} \end{aligned}$	1A Identifying the percentage 1M Subtraction 1CA Solution 1A Identifying the percentage 1M Subtraction 1CA Solution 1A Identifying the percentage 1M Subtraction 1CA Solution 1A Identifying the percentage 1M Addition 1CA Solution	$\begin{aligned} & \text { 12.4.5 } \\ & \text { 12.1.1 } \end{aligned}$

Ques	Solution	Explanation	AS
2.1.3(a)	\checkmark A \checkmark A They are children / the elderly,/people who are sick/ill / don't have an identity document / may not speak the correct language for the area/lack of skills/ lack of qualifications Accept any other possible correct reasons.	2A Any two valid reasons for them being unemployed	12.4.4
2.1.3(b)	$\begin{aligned} \text { Workforce } & =60 \% \text { of } 2965600 \checkmark \mathrm{M} \\ & =1779360 \quad \checkmark \mathrm{~A} \\ \text { Unemployed } & =26,4 \% \text { of } 1779360 \quad \checkmark \mathrm{M} \\ & =469751,04 \quad \checkmark \mathrm{~S} \\ & \approx 469751 \quad \checkmark \mathrm{CA} \end{aligned}$ OR $\begin{aligned} \text { Unemployed } & =\stackrel{\checkmark \mathrm{M}}{26,4 \% \times 6 \mathrm{~A}} \stackrel{\checkmark \mathrm{~A}}{\checkmark} \begin{aligned} \checkmark \mathrm{M} \\ 965600 \end{aligned} \\ & =469751,04 \checkmark \mathrm{~S} \\ & \approx 469751^{\checkmark} \mathrm{CA} \end{aligned}$	1M Calculating \% 1A Workforce 1 M Calculating \% of unemployed 1S Simplifying 1CA Number unemployed (rounded up or down) OR 1M Calculating \% 1A Workforce 1 M Calculating \% of unemployed 1S Simplifying 1CA Number unemployed (rounded up or down)	$\begin{aligned} & \hline 12.1 .1 \\ & 12.1 .2 \\ & 12.4 .4 \end{aligned}$
2.2.1	Gauteng has the highest economic activity in the country. It has many mines and most of the large factories, head offices of companies and banks, as well as the Stock Exchange are in Gauteng. $\quad \checkmark \checkmark$ J	2J Candidates' valid reasons (1 mark per reason; must have sentences; do not accept single words)	12.4.4

Ques	Solution	Explanation	AS
2.2.2 (a)	$\begin{aligned} & \text { Total area of South Africa } \quad \checkmark \mathrm{M} \\ & = \\ & \quad \begin{array}{l} 129370+169580+92100+361830 \\ \\ \quad+129480+116320+17010+79490 \end{array} \\ & \quad+123910) \mathrm{km}^{2} \\ & =1219090 \mathrm{~km}^{2} \quad \checkmark \mathrm{~A} \\ & \text { Land for farming } \quad \checkmark \mathrm{M} \\ & = \\ & =80 \% \text { of } 1219090 \mathrm{~km}^{2} \\ & = \\ & \hline 975272 \mathrm{~km}^{2} \quad \checkmark \mathrm{CA} \end{aligned}$ OR $\begin{aligned} & \text { Free State }=10,6 \% \text { of } \mathrm{SA}=129480 \\ & \mathrm{SA}=\frac{129480 \mathrm{~km}^{2}}{10,6 \%} \\ & =1221509,434 \mathrm{~km}^{2} \quad \checkmark \mathrm{~A} \\ & 80 \% \text { of } 1221509,434 \mathrm{~km}^{2} \quad \checkmark \mathrm{M} \\ & =977207,5472 \mathrm{~km}^{2} \\ & \approx 977208 \mathrm{~km}^{2} \quad \checkmark \mathrm{CA} \end{aligned}$	1M Addition 1A Total 1M Calculating 80\% 1CA Total area for agriculture 1M Calculating \% 1A Area of South Africa 1M Calculating \% 1CA Total area for agriculture	$\begin{aligned} & 12.4 .4 \\ & 12.3 .1 \\ & 12.1 .1 \end{aligned}$

Ques	Solution	Explanation	AS
2.2.2(b)	$\begin{aligned} \text { Arable land } & =11 \% \text { of } 975272 \mathrm{~km}^{2} \\ & =107279,92 \mathrm{~km}^{2} \quad \checkmark \mathrm{CA} \\ 3200000 \mathrm{ha} & =3200000 \times 0,01 \mathrm{~km}^{2} \\ & =32000 \mathrm{~km}^{2} \quad \checkmark \mathrm{C} \end{aligned}$ \% arable land in the Free State $\begin{aligned} & =\frac{32000 \mathrm{~km}^{2}}{107279,92 \mathrm{~km}^{2}} \times 100 \% \quad \checkmark \mathrm{M} \\ & =29,828 \ldots \% \\ & \approx 29,83 \% \checkmark \mathrm{R} \end{aligned}$ OR Continuing from $2^{\text {nd }}$ solution in 2.2.2 (a): $\begin{aligned} \text { Arable land } & =11 \% \text { of } 977208 \mathrm{~km}^{2} \\ & =107492,88 \mathrm{~km}^{2} \\ & =\frac{1 \times 107492,88}{0,01} \text { ha } \quad \checkmark \mathrm{CA} \\ & =10749288 \mathrm{ha} \end{aligned}$ \% arable land in the Free State $\begin{aligned} & =\frac{3200000 \mathrm{ha}}{10749288 \mathrm{ha}} \times \frac{100 \%}{1} \quad \checkmark \mathrm{M} \\ & \approx 29,77 \% \quad \checkmark \mathrm{R} \end{aligned}$	1M Calculating 11\% 1CA Arable land in the country 1C Conversion 1M Calculating \% 1R Rounding off 1M Calculating \% 1CA Arable land in the country 1C Conversion 1M Calculating \% 1R Rounding off	$\begin{aligned} & 12.1 .1 \\ & 12.3 .2 \\ & 12.4 .4 \end{aligned}$

Ques	Solution ${ }^{\text {E }}$	Explanation	AS
2.2.3 (a)	The province with the smallest land surface is Gauteng $\checkmark \mathrm{A}$ Population density (GAU) $\begin{aligned} & =\frac{9688100 \text { people }}{17010 \mathrm{~km}^{2}} \quad \checkmark \mathrm{M} \\ & \quad \checkmark \mathrm{CA} \\ & =569,55 \ldots \text { people } / \mathrm{km}^{2} \approx 570 \text { people } / \mathrm{km}^{2} \end{aligned}$	1A Identifying Gauteng 1M Substitution in formula 1CA Simplification ANSWER ONLY - FULL MARKS Correct calculation without mentioning Gauteng - full marks No rounding off penalty	$\begin{aligned} & 12.2 .1 \\ & 12.4 .4 \end{aligned}$
2.2.3 (b)	Tebogo's statement: The province with the smallest population is the Northern Cape \checkmark A Population density (NC) $\begin{aligned} & =\frac{1102200 \text { people }}{361830 \mathrm{~km}^{2}} \checkmark \mathrm{M} \\ & =3,046 \ldots \text { people } / \mathrm{km}^{2} \\ & \approx 3 \text { people } / \mathrm{km}^{2} \quad \checkmark \mathrm{CA} \end{aligned}$ Tebogo is correct. $\checkmark \mathrm{A}$ The population density of the Northern Cape is less than the population density of Gauteng. OR Gauteng has a large population living on a small land surface area. OR Northern Cape has a small population living on a large land surface area. OR Any other valid explanation. $\quad \checkmark \checkmark \mathrm{J}$	1A Identifying NC 1M Substitution 1CA Simplification 1A Identifying who is correct 2J Reason If get the province wrong but the rest of the answer is correct: 5 marks	$\begin{aligned} & \hline 12.2 .1 \\ & 12.1 .1 \\ & 12.4 .4 \end{aligned}$

QUESTION 3 [34]			
Ques	Solution	Explanation	AS
3.1.1	$\begin{aligned} & \text { Total Income } \begin{array}{l} \quad \text { A } \\ =(\text { number of Category } 1 \text { tickets }) \times \mathrm{R} 1400 \checkmark \mathrm{~A} \\ \quad+(\text { number of Category } 2 \text { tickets }) \times \mathrm{R} 1050 \\ \quad+\text { (number of Category } 3 \text { tickets) } \times \mathrm{R} 700 \\ \quad+\text { (number of Category } 4 \text { tickets }) \times \mathrm{R} 350 \checkmark \mathrm{~A} \end{array} \\ & \begin{array}{l} \text { OR } \\ \text { Total Income } \\ \quad=\left(x_{1}\right) \times \mathrm{R} 1400+\left(x_{2}\right) \times \mathrm{R} 1050+\left(x_{3}\right) \times \mathrm{R} 700 \\ \quad+\left(x_{4}\right) \times \mathrm{R} 350 \quad \checkmark \mathrm{~A} \end{array} \end{aligned}$	1A Naming categories/using a variable 1A Prices of tickets 1A Summing all 4 categories	12.2.1
3.1.2 (a)	Total Income $\begin{aligned} \checkmark & \checkmark \mathrm{A} \vee \mathrm{~V} \\ = & (12425 \times \mathrm{R} 1400)+(8672 \times \mathrm{R} 1050) \\ & +(4546 \times \mathrm{R} 700)+(14424 \times \mathrm{R} 350) \\ = & \text { R34 } 731200 \quad \checkmark \mathrm{CA} \end{aligned}$	1A Correct number of tickets with corresponding price 1M Summing the products 1CA Total income	$\begin{aligned} & \hline \text { 12.2.1 } \\ & \text { 12.1.1 } \end{aligned}$

Ques	Solution	Explanation	AS
3.1.2 (b)	Total expected number of tickets sold $=40067 \quad \checkmark \mathrm{~A}$ Number of expected unsold tickets $=42000-40067=1933 \quad \checkmark \mathrm{CA}$ Average price $=\mathrm{R} \frac{700+350}{2}=\mathrm{R} 525$ 48% of average price $=0,48 \times \mathrm{R} 525=\mathrm{R} 252 \quad \checkmark \mathrm{CA}$ Additional income $=\mathrm{R} 252 \times 1933 \checkmark \mathrm{CA}$ $=\mathrm{R} 487116 \quad \checkmark \mathrm{CA}$ OR Number of expected unsold tickets $=42000-40067=1933 \quad \checkmark \checkmark \mathrm{C}$ Average price $=\mathrm{R} \frac{700+350}{2}=\mathrm{R} 525$ Income from unsold tickets $=1933 \times \mathrm{R} 525=\mathrm{R} 1014825 \quad \checkmark \mathrm{CA} \quad \checkmark \mathrm{CA}$ Additional income after discount $\begin{equation*} =48 \% \text { of R1 } 014825=\mathrm{R} 487116 \quad \checkmark \mathrm{CA} \tag{7} \end{equation*}$	1A Number of tickets sold 1CA Number of tickets not sold 1A Finding average price 1A Average price for Cat. 3 \& 4 1CA 48% of average price 1CA Calculations 1CA Additional income 2C Number of unsold tickets 2A Average price 2CA Calculations 1CA Additional income ANSWER ONLY - FULL MARKS 48% of answer : 6 marks	$\begin{aligned} & \text { 12.1.1 } \\ & \text { 12.2.1 } \\ & \text { 12.4.3 } \end{aligned}$

Ques	Solution	Explanation	AS
3.2.1	$$	1A Cost for group matches 1A Cost for round 1 1CA Total cost	$\begin{aligned} & 12.1 .1 \\ & 12.4 .4 \end{aligned}$
3.2.2 (a)	$\begin{align*} \mathrm{i} & =7 \% \div 12 \quad \checkmark \mathrm{~A} \\ & =0,5833 \ldots \% \\ & \quad \checkmark \mathrm{CA} \tag{2}\\ & =0,58 \% \text { or } 0,0058 \text { or } \frac{0,58}{100} \end{align*}$	1A Divided by 12 1CA Value of i	12.1.3
3.2.2 (b)	14 months $\quad \checkmark \mathrm{A}$	1A Number of monthly deposits	12.1.3
3.2.2 (c)	$\begin{aligned} x & =\frac{\mathrm{R} 7000 \times 0,0058}{\left[(1+0,0058)^{14}-1\right]} \quad \checkmark \checkmark \mathrm{SF} \\ & =\mathrm{R} 481,422 \ldots \quad \checkmark \mathrm{CA} \end{aligned}$ He must save R481,42 monthly.	2SF Substituting 1CA Simplification 1CA Rounding off ANSWER ONLY - FULL MARKS Substitute 3 values correct : 2 SF marks Substitute 2 values correct : 1 SF mark	$\begin{aligned} & \hline 12.1 .3 \\ & 12.2 .1 \end{aligned}$

Ques	Solution	Explanation	AS
3.3		1 M Using conversion to euro 1A Amount in euro 1M Conversion to rouble 1CA Amount in rouble 1M Multiplication 1M Division 1A Correct values 1CA Amount in rouble 1 M calculating conversion factor 1A correct value 1 M multiplying 1CA Amount in rouble 1 M calculating conversion factor 1A correct value 1M Dividing 1CA Amount in rouble ANSWER ONLY - FULL MARKS Penalise only once for rounding off	12.1.3

QUESTION 4 [32]			
Ques	Solution	Explanation	AS
4.1.1	$\left.\begin{array}{rl} \mathrm{P}(\text { boy in Grade 12) }) & =\frac{60}{302} \checkmark \mathrm{~A} \\ \checkmark \mathrm{~A} \end{array}\right] \begin{aligned} & \\ & \\ & =\frac{30}{151}(\approx 0,20 \text { or } 19,87 \%) \end{aligned}$	1A Numerator 1A Denominator	12.4.5
4.1.2	Number of learners NOT in Grade 10 OR Number not in Grade 10 $=$ Total number - Number in Grade 10 $\begin{aligned} & =302-165=137 \quad \checkmark \mathrm{~A} \\ & \mathrm{P}(\text { not in Grade } 10)=\frac{137}{302} \quad \checkmark \mathrm{~A} \\ & \checkmark \mathrm{~A} \end{aligned}$	1A Number not in Grade 10 1A Numerator 1A Denominator 1A Number not in Grade 10 1A Numerator 1A Denominator 1A Number not in Grade 10 1A Numerator 1A Denominator	12.4.5
4.2.1(a)	$\begin{aligned} \text { The return distance } & =2 \times 45 \mathrm{~km} \\ & =90 \mathrm{~km} \quad \checkmark \mathrm{M} \end{aligned}$ 90 km is between 50 km and 100 km Cost $=$ R800 $\quad \checkmark$ CA	1M Correct distance 1CA Cost for return distance between 50 km and 100 km (2)	$\begin{aligned} & 12.2 .1 \\ & \text { 12.3.1 } \end{aligned}$

Ques	Solution	Explanation	AS
4.2.1 (b)	$\begin{aligned} & \text { Return distance }=100 \mathrm{~km}+36 \mathrm{~km} \quad \checkmark \mathrm{M} \\ & \begin{aligned} \text { Cost in rand } & =\mathrm{R} 800+36 \times \mathrm{R} 5 \quad \checkmark \mathrm{~A} \\ & =\mathrm{R} 980 \checkmark \mathrm{CA} \end{aligned} \end{aligned}$ OR $\begin{align*} & \checkmark \mathrm{M} \tag{3}\\ \text { Cost in Rand } & =\mathrm{R} 800+\mathrm{R} 5(136-100)^{\checkmark \mathrm{A}} \\ & =\mathrm{R} 800+\mathrm{R} 180 \\ & =\mathrm{R} 980 \quad \checkmark \mathrm{CA} \end{align*}$	1M Adding 1A Distance above 100 km 1CA Cost	$\begin{aligned} & 12.2 .1 \\ & \text { 12.3.1 } \end{aligned}$
4.2.2	Cost (in rand) $\left.\begin{array}{c} \checkmark \mathrm{A} \\ =\mathrm{R} 800 \end{array} \stackrel{\vee \mathrm{~A}}{\checkmark} \text { (return distance travelled }-100 \mathrm{~km}\right) \times \stackrel{\checkmark \mathrm{A}}{\mathrm{R} 5 / \mathrm{km}}$ OR $\checkmark \mathrm{M} \quad \checkmark \mathrm{CA} \quad \checkmark \mathrm{~A}$ Cost in Rand $=$ R800 + no. Of km over 100$) \times \mathrm{R} 5$	1A Basic cost up to 100 km 1A Return distance travelled 1A Rate per km	12.2.1
4.2.3	R1 $650=\mathrm{R} 800+($ return distance travelled -100$) \times \mathrm{R} 5$ \checkmark CA $1650-800=($ return distance travelled -100$) \times 5$ $\frac{850}{5}+100=$ distance travelled \checkmark CA $170+100=$ distance travelled Distance travelled $=270 \mathrm{~km} \checkmark \mathrm{CA}$ OR $\begin{aligned} \text { Distance travelled } & =\frac{\mathrm{R} 1650-\mathrm{SF} 800}{\mathrm{R} 5} \mathrm{~km}+100 \mathrm{~km} \checkmark \mathrm{CA} \\ & =270 \mathrm{~km} \quad \checkmark \mathrm{CA} \end{aligned}$	1SF Substitution into own formula (from 4.2.2) 1CA Dividing by 5 1CA Adding 100 km 1CA Distance travelled	$\begin{aligned} & \hline 12.2 .1 \\ & 12.3 .1 \end{aligned}$

Ques	Solution	Explanation	AS
4.3.1 (a)	$77 \div 15=5$ remainder $2 \quad \checkmark \mathrm{~A}$	1A Division	12.2 .1
	The minimum number of minibuses needed is $6 \checkmark \mathrm{CA}$	1CA Solution	

Ques	Solution	Explanation	AS
4.4	$\begin{aligned} & \text { Radius of bus tyre }=60 \mathrm{~cm} \\ & \text { Radius of minibus tyre }=\frac{7}{\mathbf{1 2}} \times 60 \mathrm{~cm} \\ &=35 \mathrm{~cm} \quad \checkmark \mathrm{~A} \end{aligned}$ Circumference of minibus tyre $\begin{aligned} & =2 \times 3,14 \times 35 \mathrm{~cm} \checkmark \mathrm{SF} \\ & =219,8 \mathrm{~cm} \quad \checkmark \mathrm{CA} \\ & =0,002198 \mathrm{~km} \quad \checkmark \mathrm{CA} \\ & 1862=\frac{\text { distance travelled }}{0,002198 \mathrm{~km}} \quad \checkmark \mathrm{SF} \\ & \begin{array}{r} \text { Distance travelled } \end{array}=1862 \times 0,002198 \mathrm{~km} \\ & =4,092676 \\ & \approx 4 \mathrm{~km} \quad \checkmark \mathrm{CA} \end{aligned}$ OR $\begin{aligned} \text { Diameter of minibus tyre } & =\frac{\mathbf{7}}{\mathbf{1 2}} \times 120 \text { A } \mathrm{cm} \\ & =70 \mathrm{~cm} \end{aligned}$ Circumference of minibus tyre $\begin{aligned} & =3,14 \times 70 \mathrm{~cm} \quad \checkmark \mathrm{SF} \\ & =219,8 \mathrm{~cm} \quad \checkmark \mathrm{~A} \\ & =0,002198 \mathrm{~km} \quad \checkmark \mathrm{CA} \\ & 1862=\frac{\text { distance travelled }}{0,002198 \mathrm{~km}} \quad \checkmark \mathrm{SF} \\ & \begin{aligned} \text { Distance travelled } & =1862 \times 0,002198 \mathrm{~km} \\ & =4,092676 \\ & \approx 4 \mathrm{~km} \end{aligned} \checkmark \mathrm{CA} \end{aligned}$ OR	1A Radius of minibus tyre 1SF Radius $=1 / 2$ diameter 1CA Circumference of minibus tyre in cm 1CA Converting to km 1SF Substitution into formula 1CA Distance travelled 1A Diameter of minibus tyre 1SF Substitution into formula 1A Circumference of minibus tyre in cm 1CA Converting to km 1SF Substitution into formula 1CA Distance travelled OR	$\begin{aligned} & 12.3 .1 \\ & \text { 12.1.1 } \\ & \text { 12.2.1 } \end{aligned}$

Ques	Solution	Explanation	AS
	$\begin{aligned} & \text { Radius of bus tyre }=60 \mathrm{~cm} \\ & \begin{aligned} \text { Radius of minibus tyre } & =\frac{7}{12} \times 60 \mathrm{~cm} \\ & =35 \mathrm{~cm} \quad \checkmark \mathrm{~A} \end{aligned} \\ & \begin{aligned} \text { Distance } & =\text { Rotation } \times \text { Circumference } \quad \checkmark \mathrm{SF} \\ & =1862 \times 2 \times 3,14 \times 35 \mathrm{~cm} \quad \checkmark \mathrm{~A} \checkmark \mathrm{SF} \\ & =409267,6 \mathrm{~cm} \quad \checkmark \mathrm{C} \\ & =4,092646 \mathrm{~km} \\ & \approx 4 \mathrm{~km} \quad \checkmark \mathrm{CA} \end{aligned} \end{aligned}$	1A Radius of minibus tyre 1SF Substitution into formula 1A Circumference of minibus tyre in cm 1CA Converting to km 1SF Substitution into formula 1CA Distance travelled	

QUESTION 5 [21]

Ques	Solution	Explanation	AS
5.1.2	Total outer surface area $\begin{aligned} & =\pi \times(\text { radius })^{2}+2 \pi \times \text { radius } \times \text { height } \\ & \quad \checkmark \mathrm{SF} \quad \checkmark \mathrm{~A} \quad \checkmark \mathrm{~A} \\ & = \\ & =3,14 \times(25 \mathrm{~cm})^{2}+2 \times 3,14 \times 25 \mathrm{~cm} \times 15 \mathrm{~cm} \\ & = \\ & =1962,5 \mathrm{~cm}^{2}+2355 \mathrm{~cm}^{2} \\ & =4317,5 \mathrm{~cm}^{2} \quad \checkmark \mathrm{CA} \quad \checkmark \mathrm{~A} \end{aligned}$	1F Identifying formula 1SF Substitution into formula 1A Value of radius 1A Value of height 1CA Surface area 1A Correct units Answer using π on the calculator $=4319,7 \mathrm{~cm}^{2}$ Answer using $\frac{22}{7}=4321,4 \mathrm{~cm}^{2}$ ANSWER ONLY - FULL MARKS	12.3.1
5.2	Cost for Option 1: Cost for 100 people $\begin{aligned} & =100 \times \mathrm{R} 120+\mathrm{R} 12000 \times \frac{14}{100} \\ & =\mathrm{R} 12000+\mathrm{R} 1680 \\ & =\mathrm{R} 13680 \quad \checkmark \mathrm{CA} \end{aligned}$ OR $\begin{aligned} \text { Cost for } 100 \text { people } & =\text { R120 } \times \frac{\checkmark \mathrm{A}}{100} \times 100 \\ & =\mathrm{R} 13680 \quad \checkmark \mathrm{CA} \end{aligned}$ OR $\begin{aligned} \text { Cost per head } & =\mathrm{R} 120 \times \frac{14}{100}+\mathrm{R} 120 \\ & =\mathrm{R} 136,80 \end{aligned}$ $=R 13680$ Cost for Option 2: $\begin{aligned} \text { Cost for } 100 \text { people } & =\text { R3 } 200+100 \times \mathrm{R} 80 \\ & \begin{aligned} & \checkmark \mathrm{M} \\ & \text { R11 } 200 \end{aligned} \quad \checkmark \mathrm{CA} \end{aligned}$ Option 2 is the cheaper option $\checkmark \mathrm{O}$	1A Multiplication/adding VAT 1CA Simplification 1A Multiplication/adding VA 1CA Simplification 1A Multiplication/adding VAT 1CA Simplification 1M Addition/multiplication 1CA Simplification 10 Own opinion	$\begin{aligned} & 12.1 .3 \\ & 12.1 .2 \end{aligned}$
		TOTAL:	150

